
• UNISYS A Series
Communications
Management System
(COMS)
Programming
Guide

Release 3.9.0

Priced Item

September 1991

US America
8600 0650-000

• UNISYS A Series
Communications
Management System
(COMS) .
Programming
Guide

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation .

Release 3.9.0

Priced Item

. September 1991

US America
8600 0650-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 25725
Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page Issue

iii -000
iv Blank
v through xv -000
xvi Blank
xvii -000
xviii Blank
1-1 through 1-5 -000
1-6 Blank
2-1 through 2-5 -000
2-6 Blank
3-1 through 3-34 -000
4-1 through 4-16 -000
5-1 through 5-17 -000
5-18 Blank
6-1 through 6-20 -000
7-1 through 7-17 -000
7-18 Blank
8-1 through 8-5 -000
8-6 Blank
9-1 through 9-4 -000
A-I through A-16 -000
B-1 through B-6 -000
C-l through C-ll -000
C-12 Blank
0-1 through 0-15 -000
0-16 Blank

. E-1 through E-7 -000
E-8 Blank
F-l through F-32 -000
Glossary-l through 16 -000
Bibliography-l through 2 -000
Index-1 through 10 -000

Unisys uses an II-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

8600 0650-000 iii

iv 8600 0650-000

About This Guide

Purpose

Scope

This document is a guide for programming using the Communications Management
System (CaMS). The purpose of the guide is the following:

• To explain the various COMS features available to the programmer

• To outline how to program using the features available in CaMS

The CaMS product is a member of the InterPro (Interactive Productivity) Series of
products designed for use with the Unisys A Series systems.

In this guide you can find information on programming for direct-window programs and
remote-file programs. You can also find information on service functions, processing
items, interactive and batch recovery, and security ..

This guide does not include information on migrating from one release to another. For
information on compatibility issues across releases, refer to the applicable release in the
A Series Mark 3.9 Software Release Capabilities Overview.

Audience
This guide is intended for experienced applications programmers.

Prerequisites
Programmers should be proficient in the programming language they are using
to write CaMS application programs. They should also have a knowledge of data
communications subsystems. If the application program is updating a Data Management
System II (DMSII) database or a Semantic Information Manager (S1M) database, the
programmer should have knowledge of DMSII or S1M database processing.

81M is a member of the InfoExee™ family of products. The programmer should also be
aware of the content of the CaMS configuration file.

InfoExec is a trademark of Unisys Corporation.

8600 0650-000 v

About This Guide

How to Use This Guide
You should start by reading the overview to familiarize yourself with the features
available through COMS. Separate sections of the guide are devoted to communicating
with COMS through direct windows or remote-file windows. Each feature of COMS is
presented in a separate chapter. The appendixes provide sample programs and quick
reference to the meanings of messages your program receives. A glossary defines
terminology related to COMS, and acronyms that appear in this guide are spelled out
and defined in the glossary.

Manuals relevant to this product are given their full titles in the "Related Product
Information" portion of this preface. In text, manuals are first referenced by their
full titles and subsequent references use a shortened version of their titles. Unless
otherwise specified, manuals referred to in the text are for A Series machines.

Organization

vi

This guide is organized as follows:

Section 1. Introduction to COMS

This section introduces the COMS concepts and features, as they relate to programming.

Section 2. Creating Your COMS Application

This section outlines decisions that are important to a COMS programmer in developing
applications through the use of the windows available in COMS.

Section 3. Communicating with COMS through Direct Windows

This section discusses how to use direct-window programs to receive and send messages
involving COMS. Descriptions of the input and output header fields are provided, along
with information on message-routing techniques.

Section 4. Accessing Service Functions

This section describes the service functions or entry points that COMS provides to allow
you to obtain information on all configuration file entities.

Section 5. Processing Items

This section provides instructions for creating your own message -control system
(MCS) features in the form of separate modules called processing items that reside in
processing-item libraries.

8600 0650-000

About This Guide

Section 6. Interactive Recovery

This section describes a method for writing programs that update databases and the
behavior of those programs when reprocessing transactions after processing has been
interrupted.

Section 7. Batch Recovery

This section describes a method for writing batch-oriented programs that update
databases and the behavior of those programs when reprocessing transactions after
processing has been interrupted.

Section 8. Security

This section provides information on the security-checking routines that you can write
into application programs and processing items to augment COMS security or to function
independently.

Section 9. Communicating with COMS through Remote-File Windows

This section describes the various types of remote-file windows and how they are used.

Appendix A. Tables of Values and Mnemonics

This appendix provides quick-reference access to the meanings of message values
returned to your program and lists associated mnemonics.

Appendix B. COMS Header Layout

This appendix shows the layout of the COMS Header fields and attributes.

Appendix C. Sample COBOL74 Programs

This appendix provides sample programs that illustrate the use of various COMS
features.

Appendix D. Sample Processing Items

This appendix contains two sample processing items and the set of global declarations
that these processing items require.

Appendix E. Sample COBOL74.Processing Item Interface

This appendix contains a sample COBOL74 program that can be used to write processing
items by interfacing with an ALGOL shell.

Appendix F. Service Functions for Previous Releases

This appendix presents service functions to be used with previous releases of CO MS.

8600 0650-000 vii

About This Guide

In addition, a glossary, a bibliography, and an index appear at the end of this guide.

Related Product Information

viii

The information in this guide is supplemented by the following documents, which pertain .
to CaMS:

A Series Communications Management System (COMS) Capabilities Manual
(form 8600 0627)

This manual introduces CaMS, discusses the flexibility and efficiency of the CaMS
system, describes the CaMS architecture, and discusses specific features available to the
CaMS user. This manual is written for upper management, the site manager, and the
programming staff.

A Series Communications Management System (COMS) Configuration Guide
(form 8600 0312)

This guide provides an overview of the basic concepts and functions of CaMS. It includes
instructions for creating a working COMS configuration and information on how to
monitor and fine-tune CaMS system performance. This guide is written for installation
analysts, systems analysts, programmers, administrators, and performance analysts.

A Series Communications Management System (COMS) Migration Guide (form
86001567)

This guide explains how to migrate from existing message control systems (MCSs) to the
current release of CaMS. This guide is written for system administrators and system
programmers who are responsible for the migration of their site to CaMS.

A Series Communications Management System (COMS) Operations Guide
(form 8600 0833)

"This guide explains how to perform terminal-based CaMS functional tasks and serves as
a reference to COMS commands. Syntax diagrams of CaMS commands are provided
with explanations and examples of how the commands can be used. This guide is written
for terminal operators and computer operators.

8600 0650-000

Contents

About This Guide . v

Section 1. Introduction to COMS

COMS Versions 0 •• 0 0 •••• 0 0 0 00 • • • • • 1-1
COMS Features 0 •••••••••••••••• 00 • • • • • 1-1

Windows. 0 0 0 •••• 0 • '0' ••••••••• 0 0 •••• 0 • • • 1-2
Message Processing 0 •••• 0 • • • • 1-2
Message Routing 1-3
Security 0 •••••••••••••••••••• 0 0 ••••• 0 • • • • 1-4
Statistics Window .. 0 • 0 0 • 0 •••••••••• 0 • 0 • • • • • 1-4
Database Recovery 0 • 0 ••••••• 0 • 0 •• 0 •• 0 1-4

Section 2. Creating Your COMS Application

Running an Application 0 ••• 0 ••••••• 0 0 ••••• 0 .' 2-1
Some Useful COMS Commands ... 0 •••• 0 •••••• 0 0 .00000. 2-2
Accessing Applications 0 • 0 •••••••• 0 • 0 • 0 ••••• 0 • 0 • • • • • • 2-2
MCS Window Applications 0 •••• 0 0 • 0 0 0 • 0 •• 0 • 0 •••••• 0 • • 2-2
Remote-File Programs. 0 ••••••• 0 0 ••• 0 •••• 0 •• 0 • 0 0 0 0 0 • 0 2-2
Direct-Window Applications 0 ••• 0 • 0 0 0 0 • 0 ••••• 0 0 • • • • 2-3

Processing Items. 2-3
Your Security Scheme 0 • 2-3
Trancode Routing 0 ••• 0 • • • • • • • • • • • • • • • • • 2-4
Database Recovery 0 • • • • • • • • • • • • • • • • • • • 2-4
Program Use of COMS Features .. 0 ••••••• 0 0 0 0 0 '0 2-5
Modifying the COMS Configuration File 0 0 0 0 0 0 0 • 0 0 0 2-5

Section 3. Communicating with COMS through Direct
Windows

Preparing a Message Area. 0 • 0 0 0 • 0 0 • 0 0 • 0 • 0 • • • • • • • • • • • • 3-2
Initializing a Program .. 0 •••• 0 • 3-3
Creating a Designator Table 0 ••• 0 0 •••••••• 0 •••• 0 •••••• 0 3-3
Programming to Receive Messages 0 • o •• 0 •••• 0 • • 3-4

Using the Input Header 0 •••••••• 0 • • • • • • • • • • • • 3-4
Input Header Fields 0 0 • 0 • 3-4

Program Designator Field 0 •••••••• '. • • • 3-5
Function Index Field 0 • • • • • • • • • • • • • • 3-5
Function Status Field 0 • • • • • • • • • • • • • 3-5
Usercode Designator Field•......... 3-5
Security Designator Field 0 • • • 3-6
VT Flag Field 0........................ 3-6
Transparent Field 0 • • • • • • • • • • • • • • • • • 3-6

8600 0650-000 ix

Contents

x

Timestamp Field
Station Designator Field
Text Length Field
Status Value Field
Message Cou nt Field
Restart Field
Agenda Designator Field
SDF Information Field
Conversation Area Field

Detecting Queued Messages 0 0 • 0 •• 0 •• 0 • 0

Waiting for COMS Input and Task Events .. 0 •• 0 0 •••

Receiving a Message 0 • 0 ••••• 00 •

Determining the Origin of a Message 0 0 • 0 0 • 0 0 0

Using Module Function Indexes with Input. 0 0 0 •

Obtaining Direct-Window Notifications. 0 0 0 0 0 • 0

Manipulating Closed Window Dialogues 0 ••• 0 ••

Checking the Status of Input Messages o. 0 •• 0 •• 0 0 •

Programming to Send Messages 0 • 0 • 0 00 0 • 0 0 • 0 0 0 000

Using the Output Header .. 0 •• 0 • 0 • 0 0 0 0 0 • 0 •• 0 0 •

Output Header Fields 0 0 0 0 • 0 •• 0 0 0 • 0 •• 0 •••• 0 0 • 0

Destination Count Field 0 •• 0 0 0 0 0 • 0 • 0 0 0 • 0 • 0

Text Length Field 0 •••• 0 • 0 0 0 0 •• 0 0 • 0 0 • 0 •••

Status Value Field 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0

Ca rriage Control Field o. 0 0 • • 0 0 • • 0 • • 0 0 0 0 • •

Delivery Confirmation Flag Field 0 0 0 0 0 •••• 0 • 0

Delivery Confirmation Key Field 0 0 0 •••• 0 •••••

VT Flag Field 0 ••••• 0 0 0 0 •• 0 0 •••• 0 •• 0 0 0 0

Transparent Field . 0 0 0 0 •• '0 0 0 • 0 0 • 0 ••• 0 ••

Destination Designator Field' 0 • 0 0 0 ••• 0 0 • 0 0 0 •

Next Input Agenda Designator Field .. 0 • 0 ••• 0 0

Set Next Input Agenda Field .. o ••• 0 • 0 0 0 0 •••

Retain Transaction Mode Field 0 •• 0 0 • 0 ••• 0 0 0

Casual Output Field 0 •• 0 •• 0 0 0 •••••• 0

Agenda Designator Field 0............. 0 0 0

SDF I nformation Field .. 0 0 •••••• 0 0 •••••••

Conversation Area Field
Declaring Multiple Input and Output Headers .. .

COMS Message-Routing Logic
Sending a Message

Using Segmented Output
Routing Messages by Specifying a Destination ..
Routing Messages by Using Agendas ~ .
Using Transaction Mode
Routing Messages by Trancode
Program-Specified Input Agendas
Setting the VT Flag
Requesting Delivery Confirmation

Results for Successful Messages
Results for Rejected Messages .. '0 ••••••

Checking the Status of Output Messages
Attaching Dynamically to Stations

Using Key Options on Attachment

3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-9

3-11 ,
3-11
3-12
3-12
3-13
3-13
3-13
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-16
3-17
3-21
3-23
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-29
3-30
3-30
3-30
3-31
3-31

8600 0650-000

Contents

Checking Attachment Status. 3-32
Detaching Dynamically from Stations . 3-32

Using Key Options on Detachment 3-33
Checking Detachment Status 3-33

Break Condition . 3-33

Section 4. Accessing Service Functions

Designators and Names. 4-2
Input and Output Parameters 4-2
Use of Installation Data. 4-3
Explanation of Mnemonics for Service Functions 4-5
Calling Service Functions 4-6

CONVERT TIMESTAMP 4-7
GET DESIGNATOR ARRAY USING DESIGNATOR. . . 4-8 - - - -
GET DESIGNATOR USING DESIGNATOR. 4-8 - --
GET DESIGNATOR USING NAME. 4-9 - --
GET INTEGER ARRAY USING DESIGNATOR. 4-10 - - - -
GET INTEGER USING DESIGNATOR. 4-10 - - -
GET NAME USING DESIGNATOR. 4-11 - - -
GET REAL ARRAY. 4-12 - -
GET STRING USING DESIGNATOR. 4-13 - - -
STATION TABLE ADD 4-14 - -
STATION TABLE INITIALIZE 4-14 - -
STATION TABLE SEARCH 4-15 - -
TEST DESIGNATORS . 4-15

Section 5. Processing Items

How Processing Items Alter Message Data. 5-2
Routing of a Message for Preprocessing. 5-2
Routing of a Message for Postprocessing 5-2
How the Agenda Processor Library Handles a Message 5-3
Example of Processing Items Used for Postprocessing . 5-4

Creating a Processing-Item Library. 5-4
Conventions for Creating Libraries. 5-4
Choosing a Library Configuration. 5-5
Creating Multiple Libraries Containing Few Entry Points 5-5
Creating a Single Library with Multiple Entry Points. . . 5-5
Example of a Single Library Containing Multiple Entry

Points. 5-5
Creating a Processing Item Using the ALGOL Specification 5-6

STATE Parameter ...• • 5-7
HEADER Parameter. 5-8
Updating Input Header Fields. 5-9
Updating Output Header Fields. 5-9
USER DATA Parameter . 5-9
TEXT 1 and TEXT 2 Parameters 5-10 - -
OUTPUT PROC Parameter. 5-10 - .

8600 0650-000 xi

Contents

Calling OUTPUT _PROC and Transmitting a
Message 5-11

Passing the Parameters to OUTPUT_PROC 5-12
Passing an Input Header to OUTPUT _PROC 5-12
Passing an Output Header to OUTPUT _PROC .. 5-13

Formatting Output Messages. 5-14
Altering Carriage Control for Output Messages. 5-14
Carriage Control Field Values 5-14

Providing for Processing-Item Results. 5-16

Section 6. Interactive Recovery

Components of COMS Recovery , , , . , 6-1
Protected Input Queues. , .. , , , .. , . 6-1
Two-Phase Transactions, , , , , , , , . , , , , . , . . 6-1
Concurrency, , , , , . , .. , . , , , , . , 6-1

Preparing to Use Interactive Recovery , . , . , , , 6-2
General Programmatic Conventions , .. , 6-3

Updating by Using Transactions ... ,. , 6-3
Writing Two-Phase Transactions. , , , .. , .. , . . 6-5

COMS Actions When a Program Fails .,.,",..... 6~5
Requirements for Using Interactive Recovery ,.. 6-7
COMS Components That Facilitate Recovery , , . . 6-8

How DB Control and the DB Library Work , 6-8
How the Restart Data Set and Transaction Trail

Work .. , .. , " , . , ... , .. , .. . 6-8
Interactive Recovery with DMSII Databases , , . , , .. , . 6-9

Reprocessing an Aborted Transaction, , 6-10
Processing Messages Held in the Input Queue of the

Program, . , . , , ... , .. , , , 6-10
Archival Recovery , , , , 6-10

Writing Interactive Recovery Programs Using DMSII . , , 6-11
Creating a Restart Data Set ., ... , , , 6-11
Using Exception-Condition Statements and

DMTERMINATE , . , , 6-12
Program Flow for Recovery Programs Using DMSII . , 6-13

Declaration and Main Program Loop 6-14
Subroutines Using CaMS and DMSII (No RDS STORE) 6-15
Subroutines Using CaMS and DMSII (RDS STORE) . . . 6-17

Interactive Recovery Programs with SIM Databases. 6-19
Using Exception-Condition Statements. 6-19
Declaration and Main Program Loop 6-19

Section 7. Batch Recovery

Recovery Considerations , , 7-1
Writing Programs Using Batch Recovery without Concurrency. . 7-3

Declaration and Main Program Loop 7-4
Initializing CaMS 7-5
Initializing Interactive Mode , 7--6

xii 8600 0650-000

Section 8.

Section 9.

Contents

Initializing Batch Mode 7-7
In itia I Batch Recovery . 7-7
Abort Batch Recovery . 7-7
Handling the Recovery Transaction 7-8
Batch Processing 7-8

CaMS and DMSII (No RDS STORE) 7-9
CaMS and DMSII (RDS STORE) 7-10

Exiting CaMS. 7-11
Writing Programs Using Batch Recovery with Concurrency 7-11

Declaration and Main Program Loop 7-12
Initializing COMS 7-14
Initializing Interactive Mode 7-14
Initializing Batch Mode 7-15
Initial Batch Recovery 7-15
Error Recovery ~ 7-16
Handling the Recovery Transaction 7-16
Batch Processing 7-16
Transaction State 7-17

Security

When to Use Programmatic Security. 8-1
Using the Input Header in Security Checking 8-1

Using the Usercode Designator. 8-2
Using the Security Designator. 8-2

. Using the Module Function Index 8-2
Checking Database Records After Retrieval. 8-3
How COMS Handles Security Errors. 8-5

Communicating with COMS through Remote-File
Windows

Dynamic Remote-File Windows. 9-1
Declared Remote-File Windows. 9-2

Single-User Declared Windows•........• " . . 9-2
Multiuser Declared Windows 9-3

Additional Programming Notes for Remote-File Windows. 9-3
Designation of Input or Output Files. 9-4
Tanking and Multiuser Remote-File Windows 9-4
Exception Handling . • . 9-4

Appendix A. Tables of Values and Mnemonics

Input Header Function Status Field Values and Mnemonics ' A-2
Input Header Status Value Field Values and Mnemonics. A-8
Output Header Status Value Field Values and Mnemonics. A-II
Service Function Result Values and Mnemonics. A-14
Service Function Security Category Values and Mnemonics. . . . A-15

86000650-000 xiii

Contents

Appendix B. COMS Header Layout

Defining Input Header Information. 8-1
Defining Output Header Information. 8-4

Appendix C. Sample COBOL74 Programs

Program 1: Using a Default Agenda. C-2
Defining COMS Entities for Program 1 C-2
Declarations and Routines for Program 1 C-2
Using Program 1 . C-3
Program 1 Listing. C-3

Program 2: Using an SDF Form Processing Item C-4
Defining COMS and SDF Entities for Progra m 2 C-A
Declarations and Routines for Program 2 C-5
Using Program 2 . C-6
Program 2 Listing . C-6

Program 3: Routing by Trancode . C-8
Defining COMS and SDF Entities for Program 3 C-8
Declarations and Routines for Program 3 C-9
Using Program 3 . C-9
Program 3 Listing. C-10

Appendix D. Sample Processing Items

Global Declarations D-1
Setting the TITLE Parameter. D-1
Defining Input Header Parameters. D-6
Defining Output Header Parameters. D-6
Defining the STATE Parameters. D-7
Defining the Result Action Values D-7
Defining the Function Values. D-7

TPTOMARC Processing Item. D-8
STATUS LINE Processing Item. D-10

Appendix E. Sample COBOL74 Processing-Item Interface

Appendix F. Service Functions for Previous Releases

Agenda Designators and Names. F-l
Agenda Designators. F-1
Agenda Names . F-2

Window Designators and Maximum Users F-4
Window Designators . F-4
Maximum Users of a Window. F-5

Data Comm Device-Type Designators and Names F-7
Device-Type Designators F-7

xiv 8600 0650-000

Contents

Device-Type Names. F-8
Program Designators and Names . F-9

Program Designators. F-I0
Program Names F-ll

Security and Usercodes. F-12
Program Security Designators. F-13
Security-Category Designators. F-14
Station-Security Designators. F-16
Usercode Designators .. F-17
Usercode Names and Security Designators. F-18
Usercode Security-Category-List Designators. F-20
Security-Category Testing . F-21

Station Information . F-22
Station Attributes F-23
Station Designators. F-25
Station Lists. F-26
Station-List Designators .. F-27
Station Names . F-28

Message Date and Time . F-30

Glossary. 1

Bibliography. 1

Index. 1

8600 0650-000 xv

xvi 8600 0650-000

Tables

3-l.
3-2 ..
3-3.
3-4.
3-5.

4-1.

5-1.
5-2.
5-3.

6-1.
6-2.

A-I.
A-2.
A-3.
A-4.
A-5.

8-l.
8-2.

F-1.
F-2.
F-3.
F-4.
F-5.
F-6.
F-7.
F-8.
F-9.
F-I0.
F-ll.
F-12.
F-13.
F-14.
F-15.
F-16.
F-17.
F-18.
F-19.
F-20.
F-21.

8600 0650-000

Possible Values for the Input Header Status Value Field
Message-Routing Decision Table: Items with Assigned Values (Yes/No/-) .
Message-Routing Action Codes ; .
Segmented Message Options
Output Header Field Descriptions

Descriptions of Service Function Mnemonics

State Parameter Values for Processing Items
Carriage Control Field Values
Result Word REAL Values

COMS Actions When a Program with an Explicit SEND Fails
COMS Actions When a Program with an Implicit SEND Fails

Input Header Function Status Field Values and Mnemonics
Input Header Status Field Values and Mnemonics
Output Header Status Value Field Values and Mnemonics
Service Function Result Values and Mnemonics
Service Function Security Category Values and Mnemonics

Input Header Information
Output Header Information .

GET_AGENDA_DESIGNATOR Parameters
GET AGENDA NAME Parameters - -
GET_WINDOW _DESIGNATOR Parameters
GET_WINDOWJNFO Parameters
GET _DEVICE_DESIGNATOR Parameters
GET _DEVICE_NAME Parameters
GET _PROGRAM_DESIGNATOR Parameters
GET_PROGRAM_NAME Parameters
GET_PROGRAM_SECURITY_DESIGNATOR Parameters
GET_SECURITY_CATEGORY_DESIGNATOR Parameters
GET_STATION_SECURITY_DESIGNATOR Parameters
GET_USER_DESIGNATOR Parameters
GET_USER Parameters
GET_USER_SECURITY_DESIGNATOR Parameters
TEST SECURITY CATEGORY Parameters - -
GET _STATION_ATTRIBUTES Parameters
GET_STATION_DESIGNATOR Parameters
GET_STATION_L1ST Parameters ~ ..
GET STATION LIST DESIGNATOR Parameters - --
GET_STATION_NAME Parameters
GET DATE Parameters

3-8
3-22
3-22
3-23
3-25

4-5

5-7
5-15
5-16

6-6
6-6

A-2
A-8

A-II
A-14
A-15

8-1
B-4

F-2
F-3
F-4
F-6
F-7
F-9

F-I0
F-ll
F-14
F-15
F-16
F-18
F-19
F-20
F-22
F-23
F-25
F-26
F-27
F-29
F-31

xvii

xviii 8600 0650-000

Section 1
Introduction to COMS

The Unisys Communications Management System (CaMS) provides you with an
extremely flexible and dynamic message control system (MCS) for the Unisys A Series
systems.

COMS Versions
Two versions of CaMS are available to you, and both use the CaMS configuration file
(which defines the characteristics of the CaMS network) to provide the message control
environment.

• CaMS (Full-Featured) enables you to manipulate the configuration file by using the
CaMS Utility program. Additional features that you receive and can control directly
are processing, routing, and some security features.

The full-featured version of COMS also enables you to develop applications by using
the transaction code (trancode) routing feature, the trancode security feature, the
statistics feature, and the synchronized recovery feature for Data Management
System II (DMSII) and Semantic Information Manager (S1M) databases.

• CaMS (Kernel) creates a predefined configuration file, which cannot be
,manipulated. The CaMS (Kernel) configuration file enables you to use the window
feature with four windows: a Menu-Assisted Resource Control (MARC) window
with eight dialogues, a Command and Edit (CANDE) window with two dialogues, a
Generalized Message Control System (GEMCOS) window with one dialogue, and a
printing window used to support the Remote Print System (ReprintS). Additionally,
you can communicate' with remote-file programs.

COMS Features
The main features that you should be familiar with before using CaMS are

• Windows

• Message processing

• Message routing

• Security

• Statistics window

• Database recovery

8600 0650-000 1-1

Introduction to COMS

Windows

COMS allows you to execute multiprogram environments from one station. Each
program environment is referred to as a window. Windows do not allow you to see
several program environments at the same time, but instead to move from one program
environment to another while processing continues uninterrupted.

Thus, if payroll, accounts receivable, and inventory control applications are defined in
separate windows, an entry clerk with the appropriate security clearances could run
a payroll data entry application in one window, an accounts receivable application in
another, and an inventory control application in a third window. This clerk could move
from window to window without having to wait for processing in each window to stop.

Additionally, the window feature allows you to have up to eight dialogues in each defined
window. A dialogue is a single access point into a given program environment (window).
With multiple dialogues ofa single window, the data entry clerk (who perhaps works
for a service bureau and needs to concurrently process six customers using a single
accounts receivable application) can change freely from one customer's dialogue to
another without interrupting the processing in other copies of the accounts receivable
application. .

COMS provides three kinds of windows:

• Direct windows

• MCS windows

• Remote-file windows

A direct window allows you to route messages to programs defined to COMS while using
all of COMS preprocessing and postprocessing capabilities. An MCS window provides
access to a subordinate message control system, such as CANDE or GEMCOS. A
remote-file window is a window established by COMS to allow programs to communicate
interactively with data communication stations (remote files).

Declared remote files are defined in the configuration file, while dynamic remote files are
opened by COMS to provide access to programs that are not defined in the configuration
file.

For information about creating, modifying, and deleting windows in your COMS
environment, refer to the A Series Communications Management System (COMS)
Configuration Guide. For information on h~w to move from window to window, refer to
the A Series Communications Management System (COMS) Operations Guide.

Message Processing

1-2

Direct windows provide considerable flexibility and processing power. COMS
provides two ways of processing data found in direct window messages: by means of
direct-window programs and by using processing items. You can arrange these methods
in different sequences and use them to complement each other.

8600 0650-000

Introduction to COMS

A direct-window program can be written in ALGOL, COBOL74, Pascal, or RPG, and can
manipulate message data. All these languages, except Pascal, can be used to update
DMSII and SIM databases. For more information about DMSII, see the A Series DMSII
Application Program Interfaces Programming Guide. For more information about SIM,
see the A Series InfoExec Semantic Information Manager (SIM) Object Manipulation
Language (OML) Programming Guide.

A processing item is written in ALGOL and typically addresses a unique task that can
be used by multiple applications and can be used many times within an application. For
example, if your site requires that certain audits be done on all messages sent through
the system, you can program that task in a processing item so that all applications
developed in the CaMS direct-window environment can use this processing item.

Processing items can be used to preprocess messages before they reach a direct-window
program and postprocess messages after they leave a direct-window program. For
example, you can use preprocessing to format a menu of an application, while you might
use postprocessing to format and print a bill.

For information about CaMS direct-window programming techniques and how to
write processing items, refer to Section 5, "Processing Items," in this guide and to the
A Series ALGOL Programming Reference Manual, Volume 2: Product Interfaces. For
information on how to define processing items, see the COMS Configuration Guide.

For MCS and remote-file windows, CaMS passes messages directly to and from the MCS
or remote file.

Message Routing

COMS provides two methods of routing direct-window messages: the agenda method
and the specific destination method.

An agenda is a mechanism for routing and processing messages. Processing items
become a part of an agenda by associating them with an agenda in the configuration file.
If you use an agenda to control message routing, you can send a message to that agenda
for processing (or routing) before it reaches or after It leaves a direct-window program.

Trancodes can also be associated with an agenda. Trancodes are available only with the
full-featured version of COMS. A trancode is a message identifier that can be used by
COMS or by user applications to differentiate one message type from another. Thus, if
INQ is the trancode for inquiry in a given application window, any message given that
trancode would be routed to the agenda associated with that trancode. This method
of routing is called trancode routing or transaction-based routing (TBR). One of the
advantages of using trancodes for routing is that trancodes enable a direct window to
have agendas assigned to it for various processing and routing requirements.

The specific destination method is used by direct-window programs that directly identify
output message destinations. This provides you with additional flexibility by allowing
you to change the agenda destination at run time to direct the message to a different
destination.

8600 0650-000 1-3

Introduction to COMS

For information about defining agendas and trancodes, refer to the COMS Configuration
Guide.

For information about applying an agenda to a message or specifying a destination in a
direct-window program, refer to Section 3, "Communicating with COMS through Direct

)

Windows."

For MCS and remote-file windows, COMS passes messages directly to and from the MCS
or remote file.

Security

COMS allows you to define security measures for direct windows through the COMS
configuration file, through special processing items, and through direct-window
programs.

COMS directly controls access to various parts of the network (for example, to MCS
windows and declared remote-file windows) through the use of authorized usercodes and
authorized stations. These options are discussed in the COMS Configuration Guide.

COMS also controls access through user-written processing items that perform security
checking on usercodes and station names. See Section 5, "Processing Items," for more
information. .

In addition, you can write application programs that control security, based on
information obtained from the COMS configuration file. For a complete discussion
of programmatic control of the security of your COMS application in a direct-window
program, refer to Section 8, "Security."

COMS controls access to MCS windows and declared remote-file windows through the
use of authorized usercodes and authorized stations.

Statistics Window

Once you have installed your COMS direct-window environment, you can monitor
system performance using the COMS Statistics window. COMS allows you to gather
statistical summaries in the form of up-to-the-moment, online reports or in the form of
much more extensive printed reports. See Section 4, "Accessing Service Functions," for
more information.

Database Recovery

1-4

The database recovery feature (available for direct windows only, and only in the
full-featured version) allows COMS to automatically resubmit transactions to your
DMSII or SIM database after a transaction-state abort, system crash, or rollback.
Recovery is performed for both interactive and batch updates. In addition, if you have
implemented the protected input queue feature, recovery also causes messages in
database program queues to be recovered and processed.

8600 0650-000

Introduction to COMS

For information on writing a direct-window program that creates transaction trails,
refer to Section 6, "Interactive Recovery." For information on protected input queues
and on identifying the DMSII databases to COMS, refer to the COMS Configuration
Guide. For information on controlling transaction trails for a DMSII database, refer to
the DATABASE command description in the COMS Operations Guide. For information
on 81M, see the A Series 1nfoExec Semantic Information Management (S1M) Technical
Overview.

86000650-000 1-5

1-6 8600 0650-000

Section 2
Creating Your COMS Application

To create a COMS application in a direct window or convert an application to the COMS
environment, you must

• Write any processing items that are needed.

• Write the direct-window programs.

• Modify the configuration file to define a direct window, and link to it the programs
and processing items for which it is intended.

Suppose you wish to create a simple echo program to be run through a COMS direct
window and to supply that program with one processing item that audits the messages
and returns a duplicate of each message to the initiating station. To carry out this
intention, you must do the following:

1. Decide on a processing-item library convention and write the processing item to
audit the message before coming to the direct-window program. Refer to Section 5,
"Processing Items," for information on doing these tasks.

2. Write the direct-window program that receives and sends the messages. Refer to
Section 3, "Communicating with COMS through Direct Windows," for information
about writing direct-window programs.

3. Use the COMS Utility to modify the configuration file as follows:

a. Define the processing-item library.

b. Define the direct-window program.

c. Name and define the characteristics of the direct window.

d. Define the processing item and include that processing in a processing-item list.

e. Define the agenda and include the window name, processing-item list name, and
the direct-window program.

Running an Application
When you submit the command ON <your window name>, COMS will start your
program. When the program executes a RECEIVE statement and COMS has a message
for it, COMS constructs the input header, applies the specified agenda, and then exits.

When your program sends a message, COMS applies the specified agenda (if any), routes
the message, and then exits.

Closing your window does not cause COMS to terminate your program; you must disable
the program or the window.

8600 0650-000 2-1

Creating Your COMS Application

Some Useful COMS Commands
The following commands are useful for sending and receiving messages:

• DISABLE PROGRAM < program name>

COMS submits a null message to the program with a value of 99 in the Status Value
field. For this command to work, the program must receive the message, and it
must go to end of task (EOT) whenever it detects a Status Value message of 99. A
disabled program carmot be started up, and messages for it are rejected.

• DISABLE WINDOW < window name>

COMS sends messages with a value of 99 in the Status Value field to all programs
rurming in this window. The programs are not themselves disabled.

• ENABLE PROGRAM <program name > !WINDOW < window name>

The program or programs defined in the window can be started up to receive
messages. Note that there is no enable library command. Libraries are started
again as soon as a linkage is requested.

Accessing Applications
As a CaMS user, you can choose to access applications in any of the following ways:

• Through an existing message control system (MCS) window

• As remote-file programs

• By writing new programs or converting existing applications for use in a
direct-window environment

Mes Window Applications
Any of your applications that currently run in CANDE can be initiated from the CANDE
window or from the MARC window. You can also run these CANDE appliCations as
CaMS-declared remote-file programs. In addition, you can define customized CANDE
windows with some characteristics tailored to the programs you plan to run in those
windows. See the COMS Configuration Guide for more infdrmation on defining new
windows. Refer also to the A Series CANDE Configuration Reference Manual and the
A Series Menu-Assisted Resource Control (MARC) Operations Guide for information
about initiating programs in a CANDE or a MARC environment.

For information about running GEMCOS applications through the GEMCOS window
or installing your own MCS in the MCS window, refer to the A Series Communications
Management System (COMS) Migration Guide.

Remote-File Programs

2-2

If you have existing programs that use the GEMCOS (or some other) remote-file
interface, or if you have applications that can only receive input from one station per

8600 0650-000

Creating Your COMS Application

copy of the program, you can run these programs in COMS remote-file windows. For
information about running remote-file programs in the COMS environment, refer to'
Section 9, "Communicating with COMS through Remote-File Windows."

Direct-Window Applications
To take advantage of COMS flexibility, you can convert your existing applications to a
COMS environment or develop new applications for use in the COMS environment.

To create a COMS direct-window application or to convert an application to run in a
COMS direct-window environment, you need to make a number of decisions relating to
the following issues:

• ProcessDlgiterns

• Your security scheme

• Trancode routing

• Synchronized recovery

• Program use of COMS features

• Modifications to the COMS configuration file

Processing Items

Some decisions you should make about processing items are

• What processing items, if any, should be Written for your COMS applications in
general?

• What processing items are needed for the application you are designing?

• How should these processDlg items be linked together Dl agendas?

• What processing-item library convention should be used?

Refer to Section 5, "Processing Items," for information about programming a processing
item. Refer to the COMS Configuration Guide for information about defining processing
items in the configuration file.

Your Security Scheme

When planning your security scheme, consider the following questions:

• What combination of COMS and application-based security measures will you use?

• If you do use COMS security, what features (including control of station access,
program access, arid usercode access to windows, trancodes, and stations) are
appropriate for your needs? (Remember that trancode security measures are
available only with full-featured COMS.)

• If you control station access, what trancodes will be permitted from a given window?

8600 0650-000 2-3

Creating Your COMS Application

• If you control program access, what trancodes will be embedded in the output
messages of a given program?

• If you control access of usercodes, what stations and windows can a given usercode
be logged on to, and what trancodes can that usercode use?

• To what stations, if any, do you wish to assign the continuous log-on capability?

• If COMS security features do not fill all your security needs, then what processing .
items or security routines in your direct-window programs can add needed security
to your COMS applications?

Refer to Section 8, ~'Security," for information on programming for security, and to the
COMS Configuration Guide for more information on the configuration file security
measures.

Trancode Routing

If you are considering using trancode routing, some basic questions that need to be
answered are

• Where in the message will you place the trancode?

• Will you be using the module function index (MFD feature in your direct-window
programs?

• What trancodes will you use?

• What security categories will you apply to the trancodes? .

• What trancodes will you allow to be used by what usercodes?

• What agenda routing do you plan for each trancode?

See Section 3, "Communicating with COMS through Direct Windows," for more
information about programming for trancodes. For additional information on trancodes
and security categories, refer to the COMS Configuration Guide.

Database Recovery

The following questions should be asked if you have full-featured COMS and will be
updating DMSn databases:

• Do you plan to use synchronized recovery?

• Do you plan to use protected input queues?

• Are you presently using the DMSII single-abort feature?

• Do your programs use concurrency control?

If you are updating S1M databases, the following questions should be asked:

• Do you plan to use protected input queues?

• Do you plan to use archival recovery?

2-4 8600 0650-000

Creating Your COMS Application

Refer to Section 6, "Interactive Recovery," and to the COMS Operations Guide for
details of synchronized recovery.

Program Use of COMS Features

Consider the following questions as you are planning how to create new direct-window
applications or convert existing applications:

• Does the program have message areas to receive and send messages?

• How will the program be initialized?

Refer to Section 3, "Communicating with COMS through Direct Windows," for
information about writing direct-window programs.

Modifying the COMS Configuration File

The following questions are important in determining how to change the COMS
configuration file:

• What processing items need to be defined to COMS?

• How are they to be combined into agendas?

• What windows need to be defined?

• What agendas will be associated with what windows?

• What trancodes need to be defined?

• What programs need to be defined to COMS?

• What access will you allow to windows, trancodes, and stations?

• What stations, usercodes, and programs will be given access?

• What databases need to be defined?

These questions are only a sample of the decisions that need to be made. For more
information about modifying the COMS configuration file, refer to the COMS
Configuration Guide.

8600 0650-000 2-5

2-6 8600 0650-000

Section 3
Communicating with COMS through
Direct Windows

When you use the direct-window interface of COMS, you have access to all the COMS
features and functions, including the following:

• Service functions that let you translate names into designator values and designator
values into names to manipulate the entities of the COMS environment

• Security checking of messages that programs receive and send

• Processing items that can process message data before and after programs receive
and send it

• Dynamic opening of direct windows to terminals and dynamic communication over a
modem

If you are using the full-featured version of COMS, you also have access to the following
features:

• Message routing by transaction codes (trancodes)

• Synchronized recovery for multiple database-processing programs that are running
asynchronously

This section presents each of the programming tasks necessary for communicating with
COMS through direct windows and discusses the following topics:

• Preparing a message area

• Initializing a program

• Creating a designator table

• Programming to receive messages

• Programming to send messages

• Dynamically attaching to and detaching from stations

The following program example provides the program flow for a direct-window program
that does not interact with a database, and shows in pseudolanguage the necessary
programming steps discussed throughout this section. Indentation is used in the
pseudolanguage to indicate the scope of each statement.

8600 0650-000 3-1

Communicating with COMS through Direct Windows

* DECLARATION PART *

COMS HEADER COIN;
CO"MS HEADER CDOUT;
DATA AREA MSG;

* PROGRAM STRUCTURE *

INITIALIZE_COMS;
WHILE COIN.STATUS NOT = 99 DO

RECEIVE COIN INTO MSG;
IF CDIN.STATUS NOT = 99 THEN

HANDLE_MSG;
SEND CDOUT FROM MSG;

EXIT_COMS;

* INITIALIZE COMS *

%Set up library title for.COMS; Call to enable input%

ESTABLISH_COMS_LINK;
ENABLE INPUT COMS "ONLINE";

* EXITCOMS *

%No handling required%

EXIT PROGRAM;

Preparing a Message Area

3-2

To receive and send messages, you must define a message area in which your program
can build messages. You need to define the message area with a size and format
appropriate to the data your program sends or receives. If a message area is too smaIl to
contain all the text for a message being sent or received, COMS truncates the message.

COMS uses input and output headers to control the routing and description of your
message. The available fields of these headers are presented later in this section in
"Progra.nunfug to Receive Messages" and "Programming to Send Messages." "

8600 0650~00

Communicating with COMS through Direct Windows

In a program that performs updates with Screen Design Facility (SDF) forms, the
message area can receive the SDF form if you take the following steps:

1. Define matching offsets for the message area and the SDF form. (The SDF form
that you define with the SDF system must be at the same offset.)

2. Name the SDF form instead of the message area record when using statements that
receive or send a message.

For examples of message areas declared in your programming language, refer to the
appropriate language manual.

Initializing a Program
After you have prepared your message area, the next step required to prepare a
program to send and receive messages is to provide for program initialization.

To initialize your application program, you must do the following:

1. Link to COMS.

2. Provide for initializing the COMS interface, either in interactive or batch mode.

For the specific program statements in your programming language, see the section on
COMS program initialization in the appropriate language manual.

Creating a Designator Table
Often a program needs the designators that are associated with elements of the
configuration file, such as agendas, data communication devices, programs, security
categories, or usercodes. For this reason, you might want to include a table of element
names and corresponding designators in your program. By using a table of this sort,
your program can avoid making a call on COMS on each input for the designators the
program needs. Each entity in the configuration file has a designator that can be used
to reference the entity. This designator remains the same throughout an execution. If;
however, you do a dump and load of the configuration file, the designators will change.

Because the layout of COMS designators may change with each software release, a
program should never preserve any designator across executions. Do not, for example,
use designators as keydata in a database, except in a restart data set.

To create a designator table, do the following:

1. Pass a name to get a designator by using the appropriate COMS service function.
Refer to Section 4, "Accessing Service Functions," for additional information on
COMS service functions.

2. Create a table of configuration file element names and corresponding designators.

8600 0650-000 3-3

Communicating with COMS through Direct Windows

Programming to Receive Messages
The following paragraphs provide information about receiving messages, as well as
instructions for determining the message origin from fields in the input header.

Using the Input Header

If you want your program to receive a message from COMS, you must use an input
header. A header (or message header), which is a sequence of characters separated from
the data message itself, provides routing and descriptive information for a message. The
header is an enhanced version of the communication descriptor that was used in the
previous releases of COMS. The input header can be accessed both in processing items
and in direct-window programs.

Caution

When you set up the receive area of your message header, include enough space
for the characters of the message and all associated trancodes. If you do not allow
adequate space, the message will be truncated.

Depending on the language in which you are programming, the header name can either
be defined by COMS or be a variable name that you choose. For specific information
on using your programming language to define a header, see the appropriate language
manual. '

Input Header Fields

3-4

COMS places values into the input header fields when a direct-window program executes
a program statement that receives or accepts a message or that enables input to a
terminal. The values describe the status of, and the circumstances encountered by, each
message received by the program. Exceptions to this rule are as follows:

• If your program is updating a Data Management System II (DMSm database,
COMS places a designator representing the last audited message into the Restart
field when the program executes a BEGIN -TRANSACTION with < text> statement
or a MID-TRANSACTION statement.

• COMS passes to the receiving program any data that a processing item has placed
in the Conversation Area field of the input header. For information on processing
items, see Section 5, "Processing Items."

The values COMS places into the input header fields are designators or integers that are
part of an internal code understood by COMS and used in the COMS table structure.
For most of the designators placed in the input header, you can use a service function of
the COMS library to translate the designator to a name representing a COMS entity.

86000650-000

Communicating with COMS through Direct Windows

Service functions also allow you to translate names representing COMS entities to
designators you use in output headers.

The following is a list of input header fields and a description of their contents. To see
the layout of COMS headers, see Appendix B.

Program Designator Field

This field can contain the following designators:

• When a program or terminal is enabled, this field contains the program designator
that COMS assigns to the program. COMS uses this information for database
recovery operations. For more information on database recovery, see Section 6,
"Interactive Recovery."

• When a message is received, this field contains the program designator of the
program that originated the incoming message. If a station originated the message,
this field contains a 0 (zero).

Function I ndex Field

This field contains a user-defined positive module function index (MFI) value that can be
used for routing by trancode and security checking.

A mnemonic is provided in Pascal and RPG for a Function Index field value of 0 (zero).
See Table A-I in Appendix A for a list of these mnemonics.

Function Status Field

This field can contain one of the following values:

• A COMS-defined error value

• Values that report on the status of a dynamic attachment to another terminal

• Values that are results of delivery confirmation requests for output messages

• Values that are COMS notifications to direct windows of on/open activity, closure of
the window, or a break condition in output from the window

• Values that indicate the specific reason COMS has told a program to terminate

For information on the meaning of specific values or mnemonics in the Function Status
field, see Appendix A

Usercode Designator Field

This field contains a designator representing the usercode associated with the program
or station that originated the message.

8600 0650-000 3-5

Communicating with COMS through Direct Windows

Security Designator Field

This field contains a session security designator.

VT Flag Field

This field is returned by COMS on input after the program has set the VT flag on
output. The VT flag should be used only within a CP 2000 environment. See "Setting
the VT Flag" later in this section for more information.

Transparent Field

This field indicates whether the input message is being passed in transparent mode (that
is, with no data formatting or translation).

Timestamp Field

This field contains the time and date (in the TIME(6) system format). that a message was
first encountered by COMS. COMS audits the transaction trail for the time and date
appearing in this field when the program executes a MID-TRANSACTION statement.

Station Designator Field

This field can contain the following designators:

• If a program receives a message, this field contains a designator representing the
station that originated the incoming message.

• If a program originated the message, this field contains the station designator found
in the Station Designator field of the input header of the originating program.

• If a program dynamically attaches or detaches a terminal, the station designator in
the Station Designator field represents the attached or detached terminal.

Text Length Field

This field can contain the following values:

• When a program receives a message, this field contains the number of characters in
the text of the incoming message.

• When the program enables an input terminal with the DIAL option, this field
contains the length of the phone number of the destination.

• When a program requests delivery confirmation on output, this field contains the
length of the delivery confirmation result returned by COMS on input.

• This field contains a value of 0 (zero) when COMS notifies a direct window of
on/open activity with no text, closure of a window, or a break in output from the
window.

3-6 8600 0650-000

Communicating with COMS through Direct Windows

Status Value Field

TrJs field contains a numeric value that provides the following information:

• Confirmation as to whether an output message successfully reached its destination

• Identification of a synchronized recovery message

• Status of a message after it is processed by a processing item

• Indication that a program dynamically attached or detached a terminal, or was
unable to do so

• Indication that a program was asked to terminate

For information on the meanings of the values and associated mnemonics in this field,
see Appendix A.

Message Count Field

When a program executes a statem~nt to determine whether messages from COMS are
waiting in the queue of the program, this field contains the number of queued messages.

Restart Field

When a direct-window program enters the transaction state while updating a DMSII
database for a previous release, this field contains a designator representing the last
message that COMS audited in the transaction trail. The Pascal programming language
does not support a COMS DMSII interface and therefore does not use this field.

Agenda Designator Field

When a program receives a message, this field contains the designator of the most
recently applied input agenda.

When you use a processing item to call OUTPUT _PROC with an input header and you
want to specify an agenda, the agenda designator must be placed in this field.

SDF Information Field

COMS uses this field internally.

8600 0650-000 3-7

Communicating with COMS through Direct Windows

Conversation Area Field

This field is optional and is the only user-defined field in the header. For the correct
syntax to use when defining the field, see the appropriate language manual. This field
can contain the following information:

• Information passed by a program to processing items, by processing items to other
processing items, and by processing items to a program.

• The phone number of the destination, if a direct-window program enables an input
terminal with the DIAL option.

• Information that a program puts in the transaction trail for its own DMSII or SIM
recovery purposes. Recovery data is passed back to the application program when
transactions are resubmitted by COMS. Recovery data is unique to a particular
transaction and must not be used to retain information between transactions, such
as storing running totals in a program.

Detecting Queued Messages

3-8

You can use a statement iTJ. your program to determine whether messages from COMS
are waiting in the queue of the program. See the appropriate language manual for this
program statement. If messages are queued, the program can perform a routine that
receives messages from COMS. If the program queue does not contain any messages
from COMS, the program can perform a routine that processes messages from other
sources ..

When a program executes the statement, COMS places the number of queued messages
in the Message Count field of the input header. If more than one copy of your program is
running, the value obtained by executing the statement is the sum of messages queued
for all the copies. Since your program might not be able to receive all the queued
messages reported by the statement, you must not use the Message Count field as a loop
controller. .

Mter executing the statement, the program queries the Status Value field of the input
header. Table 3-1 shows the four possible values the field can contain.

Table 3-1. Possible Values for the Input Header Status Value Field

Value

o

·92

Description

The Message Count field contains the number of messages
queued for the program.

This value indicates that COMS is currently performing a
synchronized recovery on a DMSII database. The program
executes the RECEIVE statement to handle the recovery
transactions.

continued

8600 0650-000

Communicating with COMS through Direct Windows

Table 3-1. Possible Values for the Input Header Status Value Field (cont.)

Value

93

99

Description

The program has aborted and then restarted. The Message
Count field contains a nonzero value. This value does not
indicate the total number of messages queued for the
program. The program should execute RECEIVE statements
to handle the recovery.

The program will be directed to terminate, but it should
execute a RECEIVE statement to get its transactions and its
status 99 message.

For mnemonics associated with these values, see Appendix A in this guide.

In some programming languages, the program does not need to query the Status Value
field. The call itself returns the value. See the appropriate language manual for further
information.

Waiting for COMS Input and Task Events

CaMS provides a library entry point, the DCIW AITENTRYPOINT, that programs can
call when waiting for an event to happen. Event-driven ALGOL programs can wait for
two CaMS events. In some cases, the nature of the transaction-processing program
is such that it requires more awareness of external events than those handled by the
COMS DCI interface. In these cases, in ALGOL, a program can wait for other time
periods arid required. events in addition to the CaMS events.

For a given transaction processor (TP), CaMS causes either an input event or a task
event to happen. One input event is shared among all copies of a program. The input
event remains set to HAPPENED if messages are in the input·queue of the program.
All copies of the program waiting for the input event are awakened. On the other hand,
each copy of a program has its own task event. COMS causes the task event to happen
for a specific copy of a program when COMS wants to perform a task-specific function,
such as giving a copy instructions to go to end of task (EOT) or to process a message
during recovery.

TPs must not reset either of these events. COMS causes the event to happen at the
appropriate time and resets the event when it is no longer needed.

8600 0650-000 3-9

Communicating with COMS through Direct Windows

3-10

The program must declare a real value procedure that contains the statement with the
WAIT option set. The procedure must also take the two events as formal parameters,
and other events and variables must be visible to this procedure. The following
is an example of a real value procedure that contains the value returned by the
DCIW AITENTRYPOINT function:

REAL PROCEDURE DCIWAITENTRYPOINT (WAIT PROC)
REAL PROCEDURE WAIT_PROC (COMS_INPUT_EVENT ,

COMS_TASK_EVENT)
EVENT

COMS_INPUT_EVENT ,
COMS TASK EVENT - -

FORMAL;
LIBRARY COMS DCI LIBRARY

INTEGER
MY_TIMEOUT

FILE
MY_REMOTE_FILE (KIND = REMOTE) ,
MY_PORT_FILE (KIND = PORT)

EVENT
MY COROUTINE EVENT - -

REAL PROCEDURE MY_WAIT (COMS_INPUT_EVENT , .
COMS_TASK_EVENT)

EVENT
COMS_INPUT_EVENT ,
COMS_TASK_EVENT ;

BEGIN
MY WAIT := WAIT ((MY_TIMEOUT) ,

COMS_INPUT_EVENT ,
COMS_TASK_EVENT ,
MY_REMOTE_FILE.INPUTEVENT ,
MY_PORT_FILE.INPUTEVENT ,
MY_PORT_FILE.CHANGEEVENT ,
MY_COROUTINE_EVENT)

END MY_WAIT ;

CASE DCIWAITENTRYPOINT (MY_WAIT) OF
BEGIN
; % NEVER RETURNS (0).
HANDLE_TIMEOUT ;
HANDLE_COMS_INPUT
HANDLE_COMS_TASK ;
HANDLE-REMOTE_FILE_INPUT
HANDLE_PORT_FILE_INPUT ;
HANDLE_PORT_FILE_CHANGE ;
HANDLE_COROUTINE_EVENT
END ;

8600 0650-000

Communicating with COMS through Direct Windows

If the D CIWAITENTRYF OINT result indicates that either a CaMS input is present or a
CaMS task event has happened, the program performs a conditional CaMS RECEIVE
function (that is, a RECEIVE statement with the DONTWAIT option set).

More than one copy of a program might be running at the same time. Every copy of
a program that has called the DCIW AITENTRYFOINT function is awakened by the
triggering of the input event, but only one copy receives the message that caused the
event to be triggered. As a result, all other copies could wait indefinitely for the next
transaction if they request a CaMS RECENE function with the WAIT option set.

The DCIW AITENTRYFOINT function can be used only by ALGOL programs because
all other programming languages do not allow procedures to take events as formal
parameters when calling a subroutine.

Receiving a Message

A RECEIVE statement in your program informs CaMS that you are ready to process a
message. CaMS, in turn, sends the message to your message area.

You can use a RECEIVE statement as many times as needed in your program. You can
structure your program to receive messages from one or more stations or programs, but
you cannot programmatic~y limit the reception of messages to selected stations on the
network or to certain types of programs.

The syntax for the use of the RECEIVE statement depends upon the programming
language you are using. See the appropriate language manual for further information on
using the RECEIVE statement in your program.

Determining the Origin of a Message

To determine the origin of a message, check the Program Designator field and the
Station Designator field in the input header. In addition, check the Status Value field
of the input header to determine the message status. You are not required to know the
origin of a message, but it is strongly recommended to check the message status.

Refer to "Using the Input Header" in this section for additional information on the input
header.

To determine a message origin from the input header, use the following procedure:

1. Check the Program Designator field. When a program executes a RECEIVE
statement, the Program Designator field of the input header contains one of the
following:

• A designator representing the program that originated the message

• The value 0 (zero) or a null· designator to indicate that the message came from a
station

If this field contains a value of 0 (zero), you must check the Station Designator field
for the originating station.

8600 0650-000 3-11

Communicating with COMS through Direct Windows

2. Check the Station Designator field. When a program executes a RECEIVE
statement and a station originated the message, the Station Designator field of the
input header contains a designator representing the station that originated the
message.

If a program originated the message, this field contains the station designator found
in the Station Designator field of the input header of the originating program.

Using Module Function Indexes with Input

To facilitate the processing of messages using the transaction code routing method, you
can associate a module function index (MFI) with each trancode or group of trancodes.
This association is made in the configuration file. For instructions on using the CaMS
Utility to assign these MFIs, refer to the COMS Configuration Guide.

Once these MFIs are defined, any time a program executes a RECEIVE statement,
the Function Index field of the input header contains the MFI assigned to the trancode
associated, with the incoming message, unless the message came from another program.
The MFI can be used for routing messages to particular transaction-processing routines
within a program, assuming that the value of the MFI can be matched to a routine in a
program.

CaMS checks the validity of the trancode before reaching your program. If the trancode
is invalid, COMS applies the default input agenda to the message. If no default input
agenda has been defined, CaMS rejects the message and the station receives an error
message. The Function Status field and the Status Value field of the input header should
be checked for error messages. Refer to Appendix A for the possible error values that
CaMS returns.

Obtaining Direct-Window Notifications

3-12

COMS automatically returns values to certain input header fields of direct-window
programs through the default input agenda when a ?ON < window name> or ?CLOSE
< window name> command is issued to the direct window, or when a break. in output
from the direct window is detected. These values appear in the input header the next
time the destination program of the default input agenda receives a message with a
RECEIVE statement.

When you define a direct window with the CaMS Utility program, you can specify Open
Notification and On Notification text that the window receives for an initial opening
and for every subsequent opening. If you do not provide any text for On and Open
Notification (blanks are the default value), the Text Length field of the input header
contains a value of 0 (zero). For information on values that appear in the Function
Status field· when you do not provide any text for On and Open Notification, see
Appendix A

When a break. condition causes output from a direct window to be discarded, COMS
reports this to the direct window by routing an input to the default input agenda of the
direct window and by placing a value of 0 (zero) in the Text Length field of the input
header. See Appendix A for values placed in the Function Status field.

8600 0650-000

Communicating with COMS through Direct Windows

The break notification is the only message that will inform the program that messages
were discarded. Even if delivery confirmation has been requested on any of the
discarded messages, a delivery confirmation rejection message is not sent with that
message.

When you close a direct window with the ?CLOSE < window name> command, COMS
reports the closure by routing an input to the default input agenda of the direct window
and by placing a value of 0 (zero) in the Text Length field of the input header. See
Appendix A for values placed in the Function Status field.

Manipulating Closed Window Dialogues

Mter you close a window dialogue, any message sent to that dialogue is discarded. You
are then assigned another current window based on the type of window you are closing
and how the window is defined in the configuration file, as follows:

• If the window you are closing is a dynamic remote-file window, you are assigned to
the dialogue of the MARC window from which the dynamic remote-file window was
initiated.

• If the window you are closing is a direct window (defined in the configuration file), an
MCS window, or a declared remote-file window, then the action COMS takes when
closing the window is determined by the configuration file. You can specify which
window you want to be transferred to when your current window closes. The close
action value that is specified for your station or your usercode in the configuration
file determines the action that is taken. Refer to the CaMS Configuration Guide for
information on possible close actions.

Checking the StatLis of Input Messages

You can determine the status of an input message by checking the Status Value field in
the input header. When a RECEIVE statement is executed, a value is returned in the
Status Value field to indicate the status of a message. When the Status Value is 99, the
program should perform its end routines and go to end of task (EOT).

The meanings of the values are described in Appendix A

Note: Future releases of COMB might add values to the Status Value field
of the input header. You need to keep this in mind when writing a
program that makes use of the values this field can contain.

Programming to Send Messages
You can use a SEND statement in your program to send messages to stations or to other
programs, although you can send a message to only one destination with each SEND
statement.

You can send a message to multiple stations or programs in two ways. The first method
uses multiple send commands; each one specifies a different destination. The second
method uses an agenda that includes a processing item that calls the OUTPUT _ PROC

8600 0650-000 3-13

Communicating with COMS through Direct Windows

~

procedure to send the message to multiple destinations. Refer to "OUTPUT _ PROC
Parameter" in Section 5, "Processing Items," for additional information about the
OUTPUT _ PROC procedure.

If you plan to have your program send a message using CaMS, you must use an output
header. The following pages describe the output header and its fields.

Using the Output Header

A header, or message header, is a sequence of characters, separated from the data
message itself, that provides routing or descriptive information for a message.

Depending on the language in which you are programming, the header name can either
be defined by CaMS or be a variable name that you choose. For specific information
on using your programming language to define a header, see the appropriate language
manual.

Output Header Fields

Place designators into the output header fields to route outgoing messages and describe
their characteristics. You can obtain designators by calling service functions of the
CaMS library. If an error occurs when a program sends an outgoing message, CaMS
returns an error value to the Status Value field described later in this section. For the
layout of CaMS headers, see Appendix B.

Destination Count F.ield

This integer field specifies the number of destinations to which the program can send a
message. CaMS supports only one destination.

Text Length Field·

Use this field to specify the number of characters contained in the text of an outgoing
message; it is the only way to inform CaMS about the length of your message.

Status Value Field

3-14

With this field you can specify an agenda designator for postprocessing of the message
that a program is sending. It is recommended that you use the Agenda Designator field
for this purpose. If your window has a default output agenda, you do not need to specify
an agenda for postprocessing.

Mter the program sends a message, COMS returns an integer value to this field to
indicate whether the message was successfully sent to its destination or if an error
occurred.

For information on specific values and mnemonics, see Appendix A

8600 0650-000

· Communicating with COMS through Direct Windows

Carriage Control Field

This field can be accessed either by a processing item or a program. A program can
modify this field either directly or by means of an explicit carriage-control specification
in the SEND statement. If there is no carriage-control specification in the SEND
statement, COMS does not alter the value that might have been entered directly into
this field.

A processing item can modify this field to change the carriage control specification for an
output message that was initially provided by a program either directly or in its SEND
statement.

Delivery Confirmation Flag Field

Use this field to request delivery confirmation of an output message.

Delivery Confirmation Key Field

This field is used by a program requesting delivery confirmation to uniquely identify each
message. When COMS subsequently confirms or denies delivery; this identifying value is
returned as part of the confirmation message. See "Requesting Delivery Confirmation"
in this section for more information on confirming delivery of a message.

VT Flag Field

Use this field to set the virtual terminal flag on an output message to a CP 2000 station.
See "Setting the VT Flag" later in this section for more information.

Transparent Field

Use this field to specify transparent mode for an output message to a CP 2000 station.
Transparent mode is an operating mode in which there is no data formatting or
translation.

Destination Designator Field

This field specifies an optional destination for a message.

Next Input Agenda Designator Field

If the Set Next Input Agenda field is equal to 1 (TRUE), this field specifies the agenda
that is to be applied to the next input to the current dialogue of the destination station.
For information on specifying the next input agenda, see "Program-Specified Input
Agendas" in this section.

8600 0650-000 3-15

Communicating with COMS through Direct Windows

Set Next Input Agenda Field

This field specifies whether COMS is to use the contents of the Next Input Agenda
Designator field to change the agenda for the next input to the current dialogue of
the destination station. For information on specifying the next input agenda, see
"Program-Specified Input Agendas" in this section.

Retain Transaction Mode Field

This field specifies whether transaction mode is to be retained for the current dialogue.
A value of 1 (TRUE) indicates that transaction mode is not to be cleared for the dialogue
when the output is delivered. A value of 0 (FALSE) indicates that transaction mode is
to be cleared. For information on the use of transaction mode, see "Using Agendas for
Message Routing" in this section.

Casual Output Field

Use this field to produce casual output for a protected transaction whose output is
protected by default. Enter 1 in this field to produce casual output. If you enter 0, the
type of output produced depends on whether or not the transaction is protected. (If the
transaction is protected, the output is protected.) COMS does not change the value of
the field once it has been enabled. Therefore, be sure to change the value back to 0 if
you are using the same COMS output header with subsequent output messages that you
want protected.

Casual output is any output that is not protected. Casual output is delivered
immediately except for delays when output tanking is necessary; the casual output can
be lost if delivery is interrupted by a system failure. All COMS output for transaction
that are not protected is casual output.

Agenda Designator Field

With this field you can specify an agenda for postprocessing of the message that a
program is sending. The Status Value field can still be used for this purpose, but use of
the Agenda Designator field is recommended.

If processing items do not change the contents of the Agenda Designator field, it does
not need to be reloaded every time the program sends a new message. The Status Value
field does not offer this feature.

SDF Information Field

This field is used internally by COMS.

Conversation Area Field

3-16

This field is optional and is the only user-defined field in the header. For the correct
syntax to use when defining the field, see the appropriate language manual.

8600 0650-000

Communicating with COMS through Direct Windows

Use this field to pass information (in addition to the message data) to processing items.
For example, to use an SDF form with a COMS direct-window program, place a form key
in the first word of the Conversation Area field.

Declaring Multiple Input and Output Headers

You can declare multiple input and output headers in your program to move messages in
and out of different processing states. By declaring multiple headers, you can maintain
the flow of incoming and outgoing messages.

The following two examples illustrate the flow of programs that use multiple headers.
The first example contains one input header and two output headers. The second
example contains multiple input and output headers.

Example 1

000400 IDENTIFICATION DIVISION.
000500 PROGRAM-ID. TEST-FILE.
000600 ENVIRONMENT DIVISION.
000700 CONFIGURATION SECTION.
000800 SOURCE-COMPUTER. A-SERIES.
000900 OBJECT-COMPUTER. A-SERIES.
001000 INPUT-OUTPUT SECTION.
001100 FILE-CONTROL.
001200 SELECT PRT-FILE ASSIGN TO PRINTER.
001300 DATA DIVISION.
001400 FILE SECTION.
001500 FD PRT-FILE.
001600 01 PRINT-REC.
001700 02 FILLER PIC X(132).
001800 WORKING-STORAGE SECTION.
001900 01 MY-AREA.
002000 02 JUNK-IN PIC X(20).-
002100 01 JUNK-I.
002200 02 JUNK-2 PIC 9(5) USAGE BINARY.
002300 02 JUNK-OUT PIC S9(11) USAGE BINARY.
002400 01 WS-AREA.
002500 02 FILLER PIC X(100).
002600 02 FILLER PIC X(20) VALUE "FIRST
002700 02 WS-MSG1 PIC X(20).
002800 02 FILLER PIC X(40).

MESSAGE IS

002900 02 FILLER PIC X(20) VALUE "SECOND MESSAGE IS
003000 02 WS-MSG2 PIC X(20).
003100 02 FILLER PIC X(40).
003200 02 FILLER PIC X(20) VALUE "THIRD MESSAGE IS
003300 02 WS-MSG3 PIC X(20).
003400 02 FILLER PIC X(1620).
003500 01 XYZ.
003600 02 ALWAYS PIC X(160).
003700 02 THETWO PIC X(1760).
003800 COMMUNICATION SECTION.

8600 0650-000

: II •

: II.

: II •

3-17

Communicating with COMS through Direct Windows

3-18

003900 INPUT HEADER COMS-IN
004000 PROGRAMDESG IS COMS-IN-PROGRAM
004100 FUNCTIONSTATUS IS COMS-IN-FUNCTION-STATUS
004200 FUNCTIONINDEX IS COMS-IN-FUNCTION-INDEX
004300 USERCODE IS COMS-IN-USERCODE
004400 SECURITYDESG IS COMS-IN-SECURITY-DESG
004500 TRANSPARENT IS COMS-IN-TRANSPARENT
004600 VTFLAG IS COMS-IN-VT-FLAG
004700 TIMESTAMP IS COMS-IN-TIMESTAMP
004800 STATION IS COMS-IN-STATION
004900 TEXT LENGTH IS COMS-IN-TEXT-LENGTH
005000 STATUSVALUE IS COMS-IN-STATUS-KEY
005100 AGENDA IS COMS-IN-AGENDA
005200 SDFINFO IS COMS-IN-SDF-INFO.
005300 OUTPUT HEADER COMS-OUT
005400 DESTCOUNT IS COMS-OUT-COUNT
005500 TEXT LENGTH IS COMS-OUT-TEXT-LENGTH
005600 STATUSVALUE IS COMS-OUT-STATUS-KEY
005700 TRANSPARENT IS COMS-OUT-TRANSPARENT
005800 VTFLAG IS COMS-OUT-VT-FLAG
005900 CONFIRMFLAG IS COMS-OUT-CONFIRM-FLAG
006000 CONFIRMKEY IS COMS-OUT-CONFIRM-KEY
006100 DESTINATIONDESG IS COMS-OUT-DESTINATION
006200 NEXTINPUTAGENDA IS COMS-OUT-NEXT-INPUT-AGENDA
006300 CASUALOUTPUT IS COMS-OUT-CASUAL-OUTPUT
006400 SETNEXTINPUTAGENDA IS COMS-OUT-SET-NEXT-INPUT-AGENDA
006500 RETAINTRANSACTIONMODE IS COMS-OUT-SAVE-TRANS-MODE
006600 AGENDA IS COMS-OUT-AGENDA
006700 SDFINFO IS COMS-OUT-SDF-INFO
006800 CONVERSATION AREA.
006900 02 MSG-AREA PIC X(1920).
007000 OUTPUT HEADER COMS-OUT1
007100 DESTCOUNT
007200 TEXT LENGTH
007300 STATUSVALUE
007400 TRANSPARENT
007500 VTFLAG
007600 CONFIRMFLAG
007700 CONFIRMKEY

IS COMS-OUT-COUNT
IS COMS-OUT-TEXT-LENGTH
IS COMS-OUT-STATUS-KEY
IS COMS-OUT-TRANSPARENT
IS-,cOMS-OUT-VT-FLAG
IS COMS-OUT-CONFIRM-FLAG
IS COMS-OUT-CONFIRM-KEY
IS COMS-OUT-DESTINATION
IS COMS-OUT-NEXT-INPUT-AGENDA
IS COMS-OUT-CASUAL-OUTPUT

007800 DESTINATIONDESG
007900 NEXTINPUTAGENDA
008000 CASUALOUTPUT
008100 SETNEXTINPUTAGENDA IS COMS-OUT-SET-NEXT-INPUT-AGENDA
008200 RETAINTRANSACTIONMODE IS COMS-OUT-SAVE-TRANS-MODE
008300 AGENDA IS COMS-OUT-AGENDA
008400 SDFINFO IS COMS-OUT-SDF-INFO
008500 CONVERSATION AREA.
008600 02 MSG-AREA-1 PIC X(1920).
008700 PROCEDURE DIVISION.
008800 INITIAL-PARA.
008900 CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY" TO BYFUNCTION.
009000 CHANGE ATTRIBUTE FUNCTIONNAME OF "DCILIBRARY" TO

8600 0650-000

Communicating with COMS through Direct Windows

009100 IICOMSSUPPORT II •
009200 ENABLE INPUT COMS-IN KEY IIONLINEII.
009300 HK-PARA.
009400
009500
009600
009700
009800
009900
010000
010100
010150
010200
010300
010400
010450
010500
010600
010650
010700
010800
010900
011000
011100

MOVE IICOMS II TO PRINT-REC.
MOVE lilT IS OK II TO XYZ.
RECEIVE COMS-IN MESSAGE INTO XYZ.
MOVE 1920 TO COMS-OUT-TEXT-LENGTH OF COMS-OUT1.
MOVE IIHELLO YOU ARE IN. II TO ALWAYS.
MOVE IIPLEASE GIVE THREE MEANINGFUL MESSAGES. II TO THETWO.
SEND COMS-OUT1 FROM XYZ.
RECEIVE COMS-IN MESSAGE INTO MY-AREA.
MOVE JUNK-IN TO WS-MSG1.
MOVE 1920 TO COMS-OUT-TEXT-LENGTH OF COMS-OUT.
SEND COMS-OUT FROM JUNK-IN WITH ESI.
RECEIVE COMS-IN MESSAGE INTO MY-AREA.
MOVE JUNK-IN TO WS-MSG2.·
SEND COMS-OUT FROM JUNK-IN WITH ESI.
RECEIVE COMS-IN MESSAGE INTO MY-AREA.
MOVE JUNK-IN TO WS-MSG3
SEND COMS-OUT FROM JUNK-IN WITH ESI.
MOVE 1920 TO COMS-OUT-TEXT-LENGTH OF COMS-OUT.
SEND COMS-OUT FROM WS-AREA WITH EGI AFTER ADVANCING 10 LINES.
IF COMS-IN-STATUS-KEY = 99 GO TO EOJ.
DISPLAY XYZ.

011200 ACCEPT COMS-IN MESSAGE COUNT.
011300 EOJ.
011400 STOP RUN.

Example 2

000100$ RESET FREE
000150******* $ SET LISTDOLLAR
000200******* $ SET LIST WARNSUPR
000300 IDENTIFICATION DIVISION.
000400 PROGRAM-ID. GOOD-SYNTAX.
000500*
000600* ALL VALID SYNTAX PRODUCTIONS FOR COMS HEADERS.
000700* THERE SHOULD BE NO SYNTAX ERRORS.
000800*
000900 ENVIRONMENT DIVISION.
001000 CONFIGURATION SECTION.
001100 SOURCE-COMPUTER. A3.
001200 OBJECT-COMPUTER. A3.
001300*
001400 DATA DIVISION.
001500*
001600 COMMUNICATION SECTION.
001700 INPUT HEADER IH1.
001800 INPUT HEADER IH2 PROGRAMDESG COMS-PROGRAMDESG.
001900 INPUT HEADER IH3 PROGRAMDESG IS COMS-PROGRAMDESG.
002000 INPUT HEADER IH4 CONVERSATION AREA CA SIZE 123.
002100 INPUT HEADER IH5 CONVERSATION AREA IS CA SIZE 123.

8600·0650-000 3-19

Communicating with COMS through Direct Windows

3-20

002200 INPUT HEADER IH6 CONVERSATION AREA IS CA SIZE IS 123.
002300 INPUT HEADER IH7 CONVERSATION AREA. 02 CA PIC X(123).
002400 INPUT HEADER IH8 CONVERSATION AREA.
002500 02 CA. 05 CAl PIC X. 05 CA2 PIC X.
002600 INPUT HEADER IH9 VTFLAG IS V CONVERSATION AREA CA SIZE 123.
002700 INPUT HEADER IHA VTFLAG IS V CONVERSATION AREA IS CA SIZE 123.
002800 INPUT HEADER IHB VTFLAG IS V CONVERSATION AREA IS CA SIZE IS 123.
002900 INPUT HEADER IHC VTFLAG IS V CONVERSATION AREA. 02 CA PIC X(123).
003000 INPUT HEADER IHD VTFLAG IS V CONVERSATION AREA.
003100 02 CA. 05 CAl PIC X. 05 CA2 PIC X.
003200 INPUT HEADER IHE VTFLAG V CONVERSATION AREA CA SIZE 123.
003300 INPUT HEADER IHF VTFLAG V CONVERSATION AREA IS CA SIZE 123.
003400 INPUT HEADER IHG VTFLAG V CONVERSATION AREA IS CA SIZE IS 123.
003500 INPUT HEADER IHH VTFLAG V CONVERSATION AREA. 02 CA PIC X(123).
003600 INPUT HEADER IHI VTFLAG V CONVERSATION AREA.
003700 02 CA. 05 CAl PIC X. 05 CA2 PIC X.
003800*
003900 OUTPUT HEADER OH1.
004000 OUTPUT HEADER OH2 AGENDA COMS-AGENDA •
. 004100 OUTPUT HEADER OH3 AGENDA IS COMS-AGENDA.
004200 OUTPUT HEADER OH4 CONVERSATION AREA CA SIZE 123.
004300 OUTPUT HEADER OH5 CONVERSATION AREA IS CA SIZE 123.
004400 OUTPUT HEADER OH6 CONVERSATION AREA IS CA SIZE IS 123.
004500 OUTPUT HEADER OH7 CONVERSATION AREA. 02 CA PIC X(123).
004600 OUTPUT HEADER OH8 CONVERSATION AREA.
004700 02 CA. 05 CAl PIC X. 05 CA2 PIC X.
004800 OUTPUT HEADER OH9 VTFLAG IS V CONVERSATION AREA CA SIZE 123.
004900 OUTPUT HEADER OHA VTFLAG IS V CONVERSATION AREA IS CA SIZE 123.
005000 OUTPUT HEADER OHB VTFLAG IS V CONVERSATION AREA IS CA SIZE IS 1.
005100 OUTPUT HEADER OHC VTFLAG IS V CONVERSATION AREA. 02 CA PIC X(l).
005200 OUTPUT HEADER OHD VTFLAG IS V CONVERSATION AREA.
005300 02 CA. 05 CAl PIC X. 05 CA2 PIC X.
005400 OUTPUT HEADER OHE VTFLAG V CONVERSATION AREA CA SIZE 123.
005500 OUTPUT HEADER OHF VTFLAG V CONVERSATION AREA IS CA SIZE 123.
005600 OUTPUT HEADER OHG VTFLAG V CONVERSATION AREA IS CA SIZE IS 123.
005700 OUTPUT HEADER OHH VTFLAG V CONVERSATION AREA. 02 CA PIC X(123).
005800 OUTPUT HEADER OHI VTFLAG V CONVERSATION AREA.
005900 02 CA. 05 CAl PIC X. 05 CA2 PIC X.
006000*
006100 PROCEDURE DIVISION.
006200*
006300 MAIN-SECTION SECTION.
006400 MAIN-PARA.
006500 MOVE 1 TO AGENDA OF IH1.
006600 MOVE 1 TO COMS-PROGRAMDESG OF IH2.
006700 MOVE 1 TO COMS-PROGRAMDESG OF IH3.
006800 MOVE "HI" TO CA OF IH4.
006900 MOVE "HP TO CA OF IH5.
007000
007100
007200
007300

MOVE "HI" TO CA OF IH6.
MOVE "HI" TO CA OF IH7.
MOVE "H" TO CAl OF IH8. MOVE "1" TO CA2 OF IH8.
IF V OF IH9 NEXT SENTENCE.

8600 0650-000 .

Communicating with COMS through Direct Windows

007400
007500
007600
007700
007800
007900
008000
008100
008200
008300*
008400
008500
008600
008700
008800
008900
009000
009100
009200
009300
009400
009500
009600
009700
009800
009900
010000
010100
010200

IF V OF IHA NEXT SENTENCE. MOVE "HI" TO CA OF IHA.
IF V OF IHB NEXT SENTENCE. MOVE "HI" TO CA OF IHB.
IF V OF IHC NEXT SENTENCE. MOVE "HIII TO CA OF IHC.
IF V OF IHD NEXT SENTENCE. MOVE IIH'I TO CAl OF IHD.
IF V OF IHE NEXT SENTENCE. MOVE "HIII TO CA OF IHE.
IF V OF IHF NEXT SENTENCE. MOVE "HI" TO CA OF IH"F.
IF V OF IHG NEXT SENTENCE. MOVE "HI" TO CA OF IHG.
I F V OF IHH NEXT SENTENCE. MOVE II HI II TO CA OF IHH.
IF V OF IHI NEXT SENTENCE. MOVE "H" TO CAl OF IHI.

MOVE 1 TO AGENDA OF OH1.
MOVE 1 TO COMS-AGENDA OF OH2.
MOVE 1 TO COMS-AGENDA OF OH3.
MOVE "HI" TO CA OF OH4.
MOVE "HI" TO CA OF OH5.
MOVE IIHI" TO CA OF OH6.
MOVE IIHI" TO CA OF OH7.
MOVE II H" TO CAl OF OH8. MOVE II rn TO CA2 OF OH8.
IF V OF OH9 NEXT SENTENCE.
IF V OF OHA NEXT SENTENCE. MOVE "HI" TO CA OF OHA.
I F V OF OHB NEXT SENTENCE. MOVE II HI II TO CA OF OHB.
IF V OF OHC NEXT SENTENCE. MOVE "HI" TO CA OF OHC.
IF V OF OHD NEXT SENTENCE. MOVE "H" TO CAl OF OHD.
IF V OF OHE NEXT SENTENCE. MOVE "HI" TO CA OF OHE.
IF V OF OHF NEXT SENTENCE. MOVE "HI" TO CA OF OHF.
IF V OF OHG NEXT SENTENCE. MOVE "HI" TO CA OF OHG.
I F V OF OHH NEXT SENTENCE. MOVE II HI" TO CA OF OHH.
IF V OF OHI NEXT SENTENCE. MOVE IIH'I TO CAl OF OHI.
STOP RUN.

COMS Message-Routing Logic

When you use a SEND statement to send a message, the message is routed by COMS
based on the presence and validity of the following items:

• A destination, as indicated in. the Destination Designator field of the output header.

• An agenda, as indicated in the Agenda Designator field of the output header or a
default output agenda.

• An agenda-specified destination, as indicated by the destination defined for the
agenda in COMS Utility. Note that a destination specified in the Destination
Designator field overrides an agenda-specified destination.

Table 3-2 is a decision table that indicates how COMS routes messages when these
items either have assigned values (Y) or do not have assigned values 00, or when the
presence "of an item does not matter (-). An explanation of the action codes follows the
decision table.

8600 0650-000 3-21

Communicating with COMS through Direct Windows

3-22

Table 3-2. Message-Routing Decision Table: Items with Assigned Values (Yes/No/-)

Item

Header Destination

Header Agenda

Agenda Destination

Default Output Agenda

Agenda Destination

Action Code

y

y

1

y

N

y

1

y

N

N

2

Value Assigned

N

y

y

3

N

Y

N

4

N

N

y

y

3

N

N

y

N

4

N

N

N

5

The action codes (values from 1 to 5) in Table 3-2 are associated with the actions COMS
takes during message routing. These actions are explained in Table 3-3.

Note: Do not specify an agenda as the default output agenda if it contains
a processing item that calls OUTPUT _PROC and passes an output
header that does not specify an agenda. This combination can cause
recursive calls on the same processing item, eventually causing a
STACK OVERFLOW error. To prevent this error, a processing item
that calls OUTPUT _PROC should specify an agenda other than the
default output agenda in its output header.

Action Code

1

2

3

Table 3-3. Message-Routing Action Codes

Action Taken

If the destination is a station, COMS executes any
agenda-specified processing items associated with the
message and sends the message to the destination.

If the destination is a program, the message and the agenda
deSignator are placed in the input queue of the program.
When the program executes a RECEIVE statement, COMS
removes the message from the queue, applies the
agenda-specified processing items, and passes the message
to the program.

COMS sends the message to the destination.

In this case, the agenda-specifie~ destination is a program.
As a result, the message and the agenda designator are
placed in the input queue of program. When the program
executes a RECEIVE statement, COMS removes the message
from the queue, applies the agenda-specified processing
items, and passes the message to the program.

continued

8600 0650-000

Communicating with COMS through Direct Windows

Table 3-3. Message-Routing Action Codes (cont.)

Action Code

4

5

Sending a Message

Action Taken

COMS sends the message to the originating station of the
last received message after executing any agenda-specified
processing items associated with the message.

COMS sends the message to the originating station.

A SEND statement initiates the sending of a message to a station or a program. You can
use the SEND statement as many times as needed in your program.

Direct window programs normally run in a window. However, this does not have to be
true in all cases. It is possible, using the COMS Utility, to define a program that has no
window associated with it. This is done by not having any agenda with the program as
its destination. If this "agendaless" program is run, COMS carmot associate it with any
window, and functions for getting designators and for sending output to stations will not
work in the same way as if the program ran in a window.

A program running outside a window can only send to a station if its input came from
another program running in a window, and the destination is the same station as
originated the message. The reason for this behavior is that COMS has to know to which
terminal window to send the message.

Using Segmented Output

To send segmented messages, see Table 3-4 for the COMS options.

Table 3-4. Segmented Message Options

Send Option

End-of-Message Indicator (EM!)

End-of-Group Indicator (EG!)

8600 0650-000

Description

Unsegmented output that is sent immediately. The
length of the message is not necessarily the entire
length of the Message Area variable defined, but the
length entered into the Text Length field.This option
is the default value.

Segmented output that has been held with the ESI
option is sent along with the current message. Any
carriage controls that are used here are executed
only with the current message.

continued

3-23

Communicating with COMS through Direct Windows

Table 3-4. Segmented Message Options (cont.)

Send Option

End-of-Segment Indicator (ESI)

Description

With this option, data is taken from the Message
Area variable and put into a temporary holding
space the size of the length entered into the Text
Length field. This is not necessarily the size of the
entire message area variable.

The data is then held until one of the following
takes place:

• A RECEIVE statement is processed. At this
time, all segmented output is sent to COMS.

• A SEND statement is processed with the EGI
option. At this point, all segmented output is
sent to COMSin the order in which it was
originally processed.

• A SEND statement that contains the ESI option
and directs a message to another station is
processed. In this case, a SEND statement
ends message queuing for a station because
COMS queues messages for only one station at
a time.

When your program uses segmented outpu,t, the MCS waits to transmit any portion of a
message until the entire message is placed in the output queue. The appropriate EM! or
EGI message indicator must be included at the end ofa message or the MCS does not
recognize the message and does not send it. After a run has stopped, messages without
an EM! or EGI at the end are not sent, and are purged from the system.

Ifmultiple SEND statements are processed with the ESI.option, and a SEND statement
with the EM! option is processed in the middle of these, the SEND statement with the
EM! option is sent immediately, while the others must wait until one of the ESI output
conditions is true. As a result, in some cases the messages might appear to be sent in an
incorrect order.

The syntax for the use of your SEND statement varies according to the programming
language you are using. For information on using the SEND statement in your
programming language, see the appropriate language manual.

Routing Messages by Specifying a Destination

3-24

When you include a SEND statement in your program, you can also specify a message
destination in the output header, unless you want the message to be returned to its
originating station. ..

To specify a destination, make entries in the output header fields as shown in Table 3-5.

8600 0650-000

Communicating with COMS through Direct Windows

Table 3-5. Output Header Field Descriptions

Field

Destination Count field

Destination Designator field

Agenda Designator field or Status
Value field

Description

This field must contain the value 1, since COMS
supports a single destination per SEND statement.

You can enter a specific destination in this field for
direct routing.

These fields can contain an agenda designator from
which a destination can be derived. The destination
specified in the agenda is overridden by any
destination specified in the COMS Destination
Designator field.

When your program executes a SEND statement, COMS reads the value in the
Destination Designator field to determine the destination for your outgoing message.
To specify direct routing, enter a station designator or a program designator. You can
specify only one destination per SEND statement.

Routing Messages by Using Agendas

Agendas are entities of the configuration file. Each agenda can consist of an optional list
of processing items and an optional destination. Processing items cannot be accessed
individually by name, but only by group name, that is, in a processing-item list. The
processing of a message sent by a program before the message'reaches its destination is
referred to as postprocessing.

To use an agenda on output, you do not need to assign a destination to the message
because the destination can be determined in the Destination Designator field or the
predefined destination at installation time.

Using the Agenda Activity menu of COMS Utility, you can create a default output
agenda, which might or might not specify a destination. If it does, the destination must
be a program (or INPUT_ROUTER, for transaction-based routing). There can be only
one default output agenda per window. For additional information on agendas, see the
COMS Configuration Guide.

To apply an agenda to a message on output, do the following:

1. Get the agenda designator by passing the agenda name to the appropriate COMS
service function. For additional information on COMS service functions, refer to
Section 4, "Accessing Service Functions."

2. Put the agenda designator in the Agenda Designator field of the output header.

8600 0650-000 3-25

Communicating with COMS through Direct Windows

3. Check the value in the Destination Designator field of the output header to see
whether it contains the desired destination for the message. The destination
specified in this field overrides the destination specified by the agenda in the
Agenda Designator field of the output header. Move a null value or 0 (zero) into the
Destination Designator field of the output header if you want to use the destination
specified by the agenda designated in the Agenda Designator field of the output
header.

4. Use a SEND statement to send the message and a copy of the output header.

If your window specification contains a default output agenda, and you want to have that
agenda applied to your message, steps 1 and 2 are not necessary.

Mter you send an outgoing message, the Status Value field of the output header contains
a value that indicates the status of the message. These values are listed in Appendix A.

If an error occurred and you failed to clear the error value from the Status Value field,
the field functions as if you had set it to null (that is, cleared of information) the next
time your program executes a SEND statement.

If there is not a designator in the Destination Designator field, the Agenda Designator
field of the output header, or the Status Value field of the output header, the message is
directed to the station originating the transaction.

If the destination of the message is determined to be a station, the processing items
associated with the agenda are applied to the message immediately.

If the destination is a program, the message and the agenda designator are placed in the
input queue of the program. When the message is removed from the queue by COMS
as a result of the execution of the destination program of a RECEIVE statement, the
processing items are applied to the message.

Note: When using agendas to route messages, the program must execute a
RECEIVE statement from a terminal- not from a program- before
a default output agenda is applied to messages. Also, second
default output agendas cannot contain processing items that call
OUTPUT _PROC without supplying a valid agenda designator.
Those that do are discontinued for exceeding resource limitations
(R-DS). .

Using Transaction Mode

3-26

. Transaction mode prevents a user from entering input until the response from the
previous input has been received. There are two agenda attributes that control
transaction mode: SET TRANSACTION MODE and TRANSACTION-MODE
AGENDA Input sent to an agenda that has the SET TRANSACTION MODE attribute
set to Y in the COMS Utility causes the transaction-mode state for that dialogue to be
set to 1 (TRUE). A TRANSACTION-MODE AGENDA attribute specifies an optional
agenda that has a program that processes input from dialogues that are already in
transaction mode. Only one TRANSACTION-MODE AGENDA attribute can be defined
for a window. If no TRANSACTION -MODE AGENDA attribute is defined for a window,

8600 0650-000

Communicating with COMS through Direct Windows

the transactions are routed to the dialogue of the MARCil station. MARC discards the
input and sends the message "Previous input still in process; message rejected" .

When an initial input message is associated with an agenda configured for transaction
mode, all subsequent input to that dialogue is processed as specified, by either the
TRANSACTION-MODE AGENDA attribute for the current window or the dialogue of
the MARCil station until the transaction mode is cleared. During this process, you can
switch to another window or dialogue; switching does not affect the transaction mode
state of the previous dialogue, unless that dialogue is explicitly closed.

For information on specific values and mnemonics associated with transaction mode, see
Appendix A. For more information on transaction mode, see the COMS Configuration
Guide.

To clear transaction mode, do one of the following:

• When you program your transaction processor (TP) or processing item to send a
message to a dialogue, place a value of zero (FALSE) in the Retain Transaction Mode
field of the output header. When COMS receives confirmation that the message has
been delivered, routing is returned to the normal specifications, unless a previous
SEND statement under transaction mode has set the next input agenda for this
dialogue.

• Execute another RECEIVE statement without an intervening SEND statement.
The transaction mode is cleared and the dialogue is returned to normal routing
specifications.

• Close your dialogue so that the dialogue that was in transaction mode no longer
exists.

If you do not want your TP or processing item to clear transaction mode, place a value
of 1 (TRUE) in the Retain Transaction Mode field of the output header when the SEND
statement is executed.

The user is responsible for maintaining the transaction-mode state of any· dialogue.
The TRANSACTION-MODE AGENDA attribute merely permits a second program to
process when transaction mode is already set, and permits the user to clear transaction
mode when desired.

If transaction mode, without an associated TRANSACTION-MODE AGENDA remains
set after the first program terminates, the user must close the window to clear the
condition.

If the second program terminates, the user must close the window to clear the condition.

Routing Messages by Trancode

You can use the Agenda Designator field of the output header to route messages by
the trancode (transaction code) contained in the message. A trancode is a sequence
of characters that can be included in a message. You can also use trancodes to invoke
processing tasks in an application program within a direct window.

8600 0650--000 3-27

Communicating with COMS through Direct Windows

To route messages by trancode, place in the Agenda Designator field of the output
header a designator represe~ting an agenda whose destination is INPUT_ROUTER.
INPUT_ROUTER is an entry point in the Router library, which is an internal COMS
library. Refer to the COMS Configuration Guide for more information about trancodes.

Because COMS program entities do not have a Trancode Position field, any message
routed to INPUT_ROUTER from a program defaults to a trancode position of 1. Only
messages routed directly from a station use the trancode position value indicated in the
COMS configuration file station record. Refer to "Determining the Origin of Messages"
earlier in this section for more information about message origin.

To use Trancode Security when routing messages by trancode, (as defined on the
Trancode screen in the COMS Utility), you must establish a current session security for
the program executing the SEND statement. Session security is established when the
program executes its first RECEIVE statement. The session security is the intersection
of the station security and the usercode security of the incoming message. If you '
execute a SEND statement before first executing a RECEIVE statement, the current
session security is null and COMS rejects the message by returning a value of 98 in the
COMS-OUT-STATUS-KEY field of the output header.

Program-Specified Input Agendas

3-28

Your program can specify the agenda to be applied to the next input message received
from a dialogue at a particular station. To do this, the Set Next Input Agenda field of
the output header must be set to 1 (TRUE). At the same time, the Next Input Agenda
Designator field of the header should contain the designator of the desired agenda.
COMS changes the agenda when it receives confirmation that the output message was
delivered to the station. If the Set Next Input Agenda field is 1 (TRUE) and the Next
Input Agenda Designator field contains a 0 (zero), COMS resets the routing of inputs to
whatever is specified in the window configuration.

If the target dialogue is in transaction mode, you can encounter one of the following
situations:

• If the SEND statement also clears transaction mode, the next input received from
the dialogue (after receipt of confirmation) is processed by the agenda in the Next
Input Agenda Designator field of the SEND statement.

• If the SEND statement does not clear transaction mode, input continues to be·
routed according to transaction-mode specifications until a CLEAR is sent. After
your program receives confirmation of a clearing message, the next input to the
dialogue is processed by the previously established input agenda. If more than one
SEND statement sets the next input agenda, the last one for which confirmation has
been received goes into effect when transaction mode is cleared.

Once your program sets the input agenda for a dialogue, that specification remains in
effect until it is set to another agenda or is reset to normal routing, or until the station
closes the dialogue. If you have configured this new agenda for transaction mode, this
agenda is returned to when transaction mode is cleared. For more information on
transaction mode, see "Using Transaction Mode" in this section.

8600 0650-000

Communicating with COMS through Direct Windows

If your destination program aborts, normal COMS error handling takes effect, but the
programmatically set input agenda is not canceled.

If your program requests delivery confirmation when it establishes a new input agenda
for a dialogue, the confirmation message is sent to the destination of the new input
agenda, not the default agenda. For more information on delivery confirmation, see
"Requesting Delivery Confirmation" in this section.

Setting the VT Flag

The VT (virtual terminal) flag of the output header can be used with a COMS direct
window, which can have a virtual terminal name when it is used within a CP 2000
environment. The virtual terminal name describes to BNA how the direct window has
formatted the output.

For information on setting the flag using your programming language, see the
appropriate language manual.

For information on virtual terminals, refer to the A Series BNA Version 2 Capabilities
Overview.

Requesting Delivery Confirmation

Delivery confirmation is available for network support processor (NSP) stations and for
CP 2000 stations. This feature of COMS lets a direct window know when a station has
received a particular message the window has sent. To request delivery confirmation
for an output message, set the Delivery Confirmation flag to 1 (TRUE) and place unique
values of your choice in the Delivery Confirmation Key field of the output header before
executing a SEND statement.

For information on field names for your programming language, see Appendix B.

When a program sends a message for which delivery confirmation is requested, COMS
returns a confirmation result to either the default input agenda of the window that
generated the output or the agenda established by that message, if the program specified
a program-specified input agenda. For more information on program-specified input
agendas, see "Program-Specified Input Agendas" in this section. The confirmation
result is contained in certain fields of the input header, and in the first three bytes of the
message area of the destination program. of the default input agenda. As soon as COMS
confirms successful delivery of the message, COMS sends the confirmation result to the
destination program of the default input agenda.

If the destination Program of the default input agenda is not the same program that
requested delivery confirmation, a program-to-program message can be sent to the
requesting program to provide the confirmation result.

8600 0650-000 3-29

Communicating with COMS through Direct Windows

Results for Successful Messages

For a message that has successfully reached its destination, COMS confirms the delivery
of the message by returning a value to the input header in the Function Status field. For
the meaning of these values and their corresponding mnemonics, see Appendix A.

COMS also returns a value of 3 to the Text Length field of the input header, and returns
in the first three bytes of the message area the unique value that was placed in the
Delivery Confirmation Key field of the output header before the original message was
sent.

Results for Rejected Messages

If the CP 2000 terminal gateway rejects an output message for which delivery
confirmation was requested, COMS returns a value of 6 in the Text Length field of the
input header and a value to the Function Status field. For the meaning of the Function
Status field values and their corresponding mnemonics, see Appendix A.

A value of 6 is returned to the Text Length field of the input header, indicating that the
rejection message is 6 bytes long. The first 3 bytes of the rejection message contain what
was in the Delivery Confirmation Key field when the original message was sent.

If a break condition causes output from a direct window to be discarded, a break
notification is sent, but no separate delivery confirmation rejection message is sent for
each discarded message, even if delivery confirmation was requested.

Bytes 4, 5, and 6 of the rejection message contain the following information:

• A value in byte 4 is an error code denoting the reason for the rejection of the
message. Error values currently defined are the following:

Value Description

1 Invalid virtual terminal data

2 Truncated data

3 Virtual terminal not supported

4 Out-of-band error

• Values in bytes 5 and 6 describe the location and origin of the message data that the
CP 2000 terminal gateway was processing when it detected the error .

. Checking the Status of Output Messages

3-30

When your program executes a SEND statement, COMS places a value in the Status
Value field of the output header to indicate whether an error has occurred.

Your program should check this value to determine whether an error has occurred
in the SEND statement or the output header. The meanings of the values and their
corresponding mnemonics are described in Table A-3.

8600 0650-000

Communicating with COMS through Direct Windows

Note: Future releases of COMS might add values to the Status Value field
of the output header. You need to keep this in mind when writing a
program that makes use of the values this field can contain.

Attaching Dynamically to Stations
You can open dynamically a direct window to a station not cUrrently attached to CaMS.
CaMS supports both CP 2000 and network support processor (NSP) stations, which
might exist on the same system and use the same direct windows.

Before executing the ENABLE statement, the program must specify the station to which
the window will be opened. To do this, the program must move a station designator for
the destination station into the Station Designator field of the input header.

If the station specified as the destination is currently attached to another program,
the window of the station is opened but is not made the current window. If you use a
CP 2000 station or use the DIAL option on an NSp, the window of the station is made
the current window.

After CaMS has successfully attached a station, the direct window that initiated the
attachment becomes the default window for the station, overriding all other default
window settings. This means that the station.automatica1ly starts communication with
the window that caused CaMS to initiate the attachment after the user log-on sequence.
If the station has a default usercode, the log-on sequence is bypassed entirely.

j

CaMS is unable to attach an X.25 station or to initiate an X.25 call until the link layer
has been established. The link layer must be established outside of CaMS.

Using Key Options on Attachment

Key options are literals defined for use with COMS. Enclose the literal in quotation
marks when you use it in the statement that enables the input terminal, or when you
place a literal into a data name you.have declared. The key options are

• KEYDIAL

• KEYWAIT

• KEYNOWAIT

• KEYWAITNOTBUSY

• KEYWAITDIALOUT

Use the KEY DIAL option only with NSP stations on switched lines. For attaching NSP
stations not on switched lines, any option other than DIAL can be used. KEY DIAL
allows a program to communicate dynamically over a modem with a station, if you place
values in three fields of the input header as follows:

8600 0650-000 3-31

Communicating with COMS through Direct Windows

1. Move a station designator for the destination station into the Station field of the
input header.

2. Move the phone number of the destination into the Conversation Area field of the
input header.

3. Move the length of the phone number into the Text Length field of the input header.

The other options connected with enabling a station, KEY WAIT, KEY NOW AIT, KEY
W AITNOTBUSY, arid KEY W AITDIALOUT, are significant for CP 2000 stations. Use
these options to specify how CaMS should wait to attach a station and, optionally, the
hostname on which the station is located.

If no option is specified or if KEY WAIT is specified, CaMS waits for both a physical
attachment (a dialout) to the station, and for the station to enter aO"not busy" state.

If KEY NOW AIT is specified, CaMS attaches the station only if it is not busy and is
already physically attached.

If KEY WAITNOTBUSY is specified, CaMS waits for the station to enter "not busy"
state, but does not wait for a physical attachment.

If KEY W AITDIALOUT is specified, CaMS waits for a physical attachment to be made,
but not for the station to enter "not busy"state.

If a hostname is specified, CaMS attaches the program to a station on that host. If a
hostname is not specified, CaMS attaches to a station on the host defined for the station
in the input header of the program.

For information o~ the syntax of the ENABLE statements and key options in your
programming language, see the appropriate language manual.

Checking Attachment Status

To find out the status of a request to attach a station programmatically, write your
program to query values in the Status Value field and the Function Status field of the
input header after the program enables a station. The meanings of the values are
described in Appendix A.

Detaching Dynamically from Stations
You can close dynamically a window to a station, or disconnect a station reached through
a modem. The station whose window will be closed is the station identified by the station
designator in the Station Designator field of the input header.

CaMS requests that the CP 2000 terminal gateway detach a station if the following
conditions prevail:

• The program disabling a station must be a program in the current window of the
station being detached.

• No dialogues to other windows are open, except dialogue 1 of the MARC window.

3-32 8600 0650-000

Communicating with COMS through Direct Windows

Using Key Options on Detachment

The key options are literals defined for use with CaMS. Enclose a literal in quotation
marks when you use it in a statement that disables an input terminal or when you place
a literal into a data name you have declared. The key options are

• KEYRETAIN

• KEY RELEASE

• KEYDIAL

• KEY DONTCARE

The KEY RETAIN, KEY RELEASE, and KEY DONTCARE options are for CP 2000
stations. The KEY DIAL option is for NSP stations on switched lines. For NSP stations
not on switched lines, any key option other than KEY DIAL can be used.

If you use the KEY RETAIN option, the CP 2000 terminal gateway retains the physical
attachment of the station and terminates only the logical attachment.

If you use the KEY RELEASE option, the CP 2000 terminal gateway terminates the
logical attachment and releases the physical attachment (that is, it hangs up the phone).

If you use neither the KEY RETAIN nor the KEY RELEASE options, the CP 2000
terminal gateway decides whether to retain or release the physical attachment to the
station.

If you use the KEY DIAL option in the ENABLE statement, you should use KEY DIAL
in the DISABLE statement to detach the station that was reached through the modem.

If you use the KEY DONTCARE option, the CP 2000 terminal gateway decides whether
to retain or release the physical at~chment to the station.

For information on the syntax of the DISABLE statements and key options in your
programming language, see the appropriate language manual~

Checking Detachment Status

To find out the status of a request to detach a station programmatically, write your
program to query values in the Status Value field and Function Status field of the input
header after the program executes the DISABLE statement. The meanings of the
values are described Appendix A.

Break Condition
Standard U nisys data comm software issues a break condition when a user enters ?BRK
or presses the break key at a station. CaMS then processes the break for the current
and resumed windows of that station. For each such window, any tanked output is
discarded and a break condition message is routed to the default input agenda of the
window. See Appendix A for the tables of values and mnemonics for the value placed in

8600 0650-000 3-33

Communicating with COMS through Direct Windows

3-34

the Function Status field of the input header to indicate a break condition message. A
direct window program obtains this message when it executes a RECEIVE statement
and there are no other prior queued messages for the window.

A direct-window program can continue to send output without checking whether a break.
condition message has been routed to it by COMS. As soon as COMS has queued the
break condition message to the program, COMS stops discarding any messages sent by
the program. Therefore, any output sent by the direct window program after this point
is displayed at the station.

8600 0650-000

Section 4
Accessing Service Functions

Thls section applies to the full-featured version of COMS. If you have developed your
programs using a previous release of COMS, see the service functions in Appendix F. For
further information about the entities and designators discussed in this section, see the
COMS Configuration Guide.

This section describes the service functions or entry points that COMS provides. Entry
points are procedures that allow access to a library code file. Service functions allow you
to obtain information on all of the entities in the configuration file.

All entities in the COMS configuration file have designators and can be used in service
function calls. For each entity, you can use your program to receive information about
the following:

• Entity name

• Installation data

For some entities, you can receive.the following additional information:

Entity

Program

Station

Station List

Usercode

Window

Information Available

Current input queue depth

Mix numbers for active copies

Response time aggregate

Response time for last transaction

Security designator

Total number of input messages handled

Device designator

Logical station number (LSN)

Screen size

Security designator

Virtual terminal (VT) type

Stations in list

Security designator

Current number of users

Maximum number of users

Application programs can communicate with CaMS through a direct-window interface
by using a CaMS header. Refer to Section 3, "Communicating with CaMS through

8600 0650-000 4-1

Accessing Service Functions

Direct Windows" for information on this procedure. This interface also allows
communication between COMS and application programs to be enhanced by the use
of designators. A designator is a binary data type that can be included in a program
to control messages symbolically rather than directly with entities in the data comm
environment.

Each COMS service function is an integer procedure of the COMS Library. When you
use a service function, you can exchange either a name that represents an entity for a
designator or a designator for a name that represents an entity.

Note: Always use the space character to initialize arrays for entity names
in your programs. 'When COMS returns an entity name in response
to a service function call, it uses space characters to blank-fill the
remainder of the array. Thus, programs that initialize and scan for
null characters will fail.

Before you call service functions, you need a general understanding of how they use
designators and names, and what their input and output parameters are.

Designators and Names
The service functions use designators to constitute an internal code understood by
COMS. The designators are used in the table structure of the system. Because the
layout of COMS designators may change with each software release, a program should
never preserve any designator across executions. Do not, for example, use designators
as keydata in a database.

The COMS service functions enable you to

• Translate designators to names that represent COMS entities.

• Translate names that represent COMS entities to designat.ors.

• Obtain additional information about the designator passed to the service function.

You can obtain designators from the message header of an application program or from
those service functions that allow you to translate names to designators. (See Section 3,
"Communicating with COMS through Direct Windows.~')

I nput and Output Parameters

4-2

When you pass a name or a designator to a service function, the name or designator is
used as an input parameter. The COMS Library returns output parameters and function
values. All service functions return an integer specifying the result of the call in an area
you define to receive your result. For the syntax for your programming language, see
the appropriate language ~ua1. For information on the specific result values and
mnemonics of service function calls, see Appendix A

You can get designators from several different places. You can get them from various
fields of the input header. (See Section 3, "Communicating with COMS through Direct

8600 0650-000

Accessing Service Functions

Windows," for a discussion of header fields.) You can also get designators by using the
following service functions:

• GET_DESIGNATOR_USING_NAME

• GET_DESIGNATOR_USING_DESIGNATOR

• GET _DESIGNATOR_ARRAY _USING_DESIGNATOR

Agenda, trancode, installation data, and station designators are different from
designators that represent other COMS entities. Whereas a program, for example, can
always obtain the same valid designator that identifies only the program itself, each
designator for the agenda, trancode, and installation data entities must uniquely identify
a particular combination of a window and that entity' In the same way, each station
designator uniquely identifies a particular combination of a window, a dialogue, and a
station.

Always comply with the following restrictions to make sure that you get valid designators
when using the GET_DESIGNATOR_USING_NAME service function for agendas,
trancodes, and installation data.

• Call this service function only from direct-window programs.

• Call the service function only after a direct-window program has enabled an input
terrn.iD.al.

• Do not allow a processing item to call the service function until the library code of the
processing item has executed a FREEZE statement.

Use of Installation Data
Installation data are used to attach special data to specific configuration elements.
The data can take the form of comments or program-accessible fields to be used by
user-created applications. Typical uses of installation data would include:

• District or branch number for location of a station.

• Test or production mark for a program.

• A set of data to group entities in the configuration according to some
installation-specific rules.

To the programmer, installation data items are handled in the same manner as the other
items in the COMS configuration. Some differences, however, need to be explained.

8600 0650-000 4-3

Accessing Service Functions

4-4

The items for an installation data entity are accessed using the following service function
calls:

Service Function Call

GET _INTEGER_ USING_ DESIGNATOR

GET _INTEGER_ARRAY _USING_DESIGNATOR

GET_STRING_USING_DESIGNATOR

Items Accessed

Accesses the following items one at a time:

• I nsta lIation -' nteger_1

• I nstallation-,nteger_2

• Installation-,nteger _3

• Installation_lnteger_ 4

Uses Installation-,nteger_AII to concatenate
all the items listed under
GET-'NTEGER_USING_DESIGNATOR.

Accesses the following items one at a time:

• I nsta IIation _ Stri ng_1

• Installation_ String_ 2

• Installation _ String_ 3

• Installation_ String_ 4

• Installation _ Hex_1

• Installat~on_Hex_2

The designator passed to these service functions can be one of the following:

• An installation data entity designator, which you can obtain from an installation data
name by using the GET _ DESIGNATOR_ USING_NAME service function or using
the GET_DESIGNATOR_USING_DESIGNATOR service function. In this case, the
entity is used in a direct manner to access the data.

• Any other entity designator that has a link to an installation data entity. In this case,
the link is used as the path to the data.

For example, these two methods of getting an installation integer for a station designator
produce the same result:

Methodl

1. Have a station designator.

2. Use the GET_INTEGER_USING_DESIGNATOR service function with the station
designator.

Method 2

1. Have a station designator.

2. Use the GET_DESIGNATOR_USING_DESIGNATOR service function with the
station designator and the request for Installation_Data _Link.

8600 0650-000

Accessing Service Functions

3. Use the GET_INTEGER _ USING_DESIGNATOR service function with that
installation data designator.

The following sequence of steps gets an installation integer for a station when the station
is linked to an installation data item that in turn is linked to another installation data
item containing the installation integer:

1. Have a station designator.

2. Use the GET DESIGNATOR USING DESIGNATOR service function with the - --
station designator and the request for Installation_Data_Link.

3. Use the GET_DESIGNATOR_USING_DESIGNATOR service function with the
installation data designator received in step 2.

4. Use the GET_INTEGER_USING_DESIGNATOR service function with the
installation data designator from step 3.

Because installation data are application dependent, each installation data entity resides
in a particular window. However, an entity can have a window of "ALL" specified, in
which case it resides in all windows. Therefore, if a program running in one window

. requests installation data, it might get different data than would a program running in
another window. COMS keeps track of where each installation date entity resides so
that the program does not have to have any any knowledge of the different windows.

Explanation of Mnemonics for Service Functions
For each service function, the allowable mnemonics for entities are listed later in this
section. Table 4-1 provides brief descriptions of each mnemonic. .

Table 4-1. Descriptions of Service Function Mnemonics

Mnemonic

Aggregate_Response _Time

Convention

Current_ User_Count

Installation_Data _ Link

I nsta lIation _ String_I,
I nsta Ilation _ String_ 2,
Insta lIation _ String_ 3,
I nstalIation_String_ 4,
Installation_Hex _1, Installation_Hex _2

8600 0650-000

Description

Sum of transaction response times. Accumulated by
CaMS.

Connection default convention. Assigned by MARC.

Number of users on a window. Kept by CaMS.

An entity pointed to by another CaMS entity.
Assigned by the CaMS Utility.

Strings of installation-specific data. Assigned by the
CaMS Utility.

continued

4-5

Accessing Service Functions

Table 4-1. Descriptions of Service Function Mnemonics (cant.)

Mnemonic

I nsta Ilation_1 nteger _1 ,
Installation Jnteger _2,
InstaliationJnteger _3,
InstaliationJnteger _ 4

Language·

Last_ Response_Time

LSN

\

Maximum_User _Count

Mixnumbers

Screen Size

Statistics

Total Transaction Count - -

Transaction_Queue _ Depth

Virtual Terminal

Calling Service Functions

Description

Integers of installation-specific data. Assigned by
COMS Utility.

Connection default language. Assigned by MARC.

Program response time in milliseconds for the last
transaction handled. Kept by CaMS.

Logical station number. Assigned by the data comm
subsystem.

Maximum allowed number of users on a window.
Assigned by the COMS Utility.

Array of mix numbers for the copies running for the
program. Kept by the operating system.

Statically configured attribute that represents the
size of the terminal attached to the system.

A gathering of program statistics. Values
accumulated by CaMS.

Number of transactions received by the program
since COMS initialized. Kept by caMS.

Number of transactions in queue for the program.
Kept by COMS.

Name of the terminal's text editor in the
communications processor. Kept by COMS.

You can call the COMS service functions with application programs and processing items.
For the specific syntax for calling a service function using your programming language,
see the appropriate language manual.

The service functions are

• CONVERT_TIMESTAMP

• GET_DESIGNATOR_ARRAY_ USING_DESIGNATOR

• GET_DESIGNATOR_USING_DESIGNATOR

• GET_DESIGNATOR_USING_NAME

• GET_INTEGER_ARRAY_ USING_DESIGNATOR

4-6 8600 0650-000

Accessing Service Functions

• GET_INTEGER_ USING_DESIGNATOR

• GET_NAME_USING_DESIGNATOR

• GET_REAL_ARRAY

• GET_STRING_USING_DESIGNATOR

• STATION_TABLE_ADD

• STATION _TABLE_INITIALIZE

• STATION_TABLE_SEARCH

• TEST_DESIGNATORS

The station table service functions that appear in the previous list perform differently
than the other service functions. Specifically, the statiori table functions provide the
user-application program with a unique integer value for a given station designator.
When provided a station designator, these functions perform the following tasks:

• Allocate a location (index) in a table

• Preserve the index within the table

• Supply the table index to the application program on request

The table index is owned by the TP and is passed to these station table service functions
on each call. The table can be searched by multiple inquirers concurrently. This table
can also be searched while it is being updated. However, the inquirer is responsible for
preventing concurrent updates.

The table can be resized by the functions. However, the table size is generally more
accurate when the caller declares an initial size based on the number of stations that
might be added to the table.

The following subsections describe each service function and provide information on how
to use the service functions to obtain information on specific entities.

CONVERT TIMESTAMP

You can use this service function to convert a COMS timestamp, TIME(6), into a form
that you can read.

The declaration in COMS is as follows:

INTEGER PROCEDURE CONVERT_TIMESTAMP(ENTY_TIMESTAMP,
ENTY_MNEMONIC,
ENTY_TIME);

Parameters

ENTY_TIMESTAMP is the TIME(6) timestamp that is returned in the Timestamp field
of the input header.

8600 0650-000 4-7

Accessing Service Functions

ENTY _MNEMONIC represents the information you are requesting. The allowable
mnemonics are as follows:

• The Date mnemonic returns the date in the form of MMDDYY.

• The Time mnemonic returns the time in the form of HHMMSS.

ENTY_TIME is the array where the result from COMS is returned.

GET DESIGNATOR ARRAY USI1'IG DESIGNATOR

You can use this service function to get a designator list representing the list of stations
associated withthe station-list designator passed as the input parameter to this function.
Because the station list is not a field of the header, you must first obtain the designator
representing the station list by using the GET_DESIGNATOR_USING _ NAME service
function. Then use the station list designator supplied by that function as the designator
variable in the GET_DESIGNATOR_ARRAY_USING_DESIGNATOR function.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_DESIGNATOR_ARRAY_USING_DESIGNATOR .

Parameters

(ENTY DESIGNATOR,
ENTY_DESGTOTAL,
ENTY_DESGVECTOR);

ENTY_DESIGNATOR represents the structure. The allowable designator is station list,
which returns a list of stations.

ENTY _ DESGTOTAL is the total number of designators in the list by COMS.

ENTY _ DESGVECTOR is the list in which the designators are returned.

GET DESIGNATOR USING DESIGNATOR

4-8

You can use this service function to get a specific designator out of the structure
represented by a designator. The designator to be passed as an input parameter can be
any designator. COMS looks at the designator and the mnemonic passed and returns the
designator information associated with the two.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_DESIGNATOR_USING_DESIGNATOR(ENTY_DESIGNATOR,
ENTY_MNEMONIC,
ENTY_DESGRES);

Parameters

ENTY _DESIGNATOR represents the structure from which you want to get a
designator.

8600 0650-000

Accessing Service Functions

ENTY _MNEMONIC is the designator type you are requesting. The allowable mnemonic
and designator combinations are as follows:

Mnemonic

Device

Installation Data Link

Security_Category

Entity

Station

All entities

Station, program, and usercode

ENTY _ DESGRES is the designator returned by COMS.

GET DESIGNATOR USING NAME

You can use this service function to convert a COMS entity name to a COMS designator.
If you have a name that represents an entity, you can get the designator associated
with that name. For instance, you could use this service function if you want to send a
message through an agenda for which you have the name. You cannot put the agenda
name in the output header, but you can obtain the agenda designator by using this
service function.

If a program requires the designator of the window under which it is operating, you can
place.an asterisk (*) in the first column of the parameter you pass for the window name
and call GET_DESIGNATOR_USING _NAME. COMS will return the window designator
for the window associated with the calling program.

IfGET_DESIGNATOR_USING_NAME receives an input name of17 blanks in a
usercode inquiry, GET_DESIGNATOR_USINy_NAME will return the superuser
designator. For more detailed information on superuser usercode and superuser
designator, refer to the A Series Security Administration Guide.

The declaration in CaMS is as follows:

INTEGER PROCEDURE GET_DESIGNATOR_USING_NAME(ENTY~NAME,
ENTY_MNEMONIC,
ENTY_DESIGNATOR);

Parameters

ENTY _NAME is the name of the entity. For the agenda, trancode, and installation data
entities, the string for the entity name should include the window name if the program
calling the service function is running in another window or is run outside of COMS. For
example, when you pass the entity name, you should provide the following:

<agenda name> of <window name>

For the installation ruita entity, if a window is not specified, and if the window in which
your program is running has no entity of the same name, the installation data with
window value equal to "ALL" is picked up, since it is the default.

8600 0650-000 4-9

Accessing Service Functions

ENTY _MNEMONIC is the mnemonic for the entity you are obtaining. The mnemonics
are listed in Appendix A. Mnemonics are allowed for all entities that have a designator.

ENTY _DESIGNATOR is the designator COMS returns to you.

GET INTEGER ARRAY USING DESIGNATOR

You can use this service function to get a list of integers from the structure represented
by a designator.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_INTEGER_ARRAY_USING_DESIGNATOR

Parameters

(ENTY_DESIGNATOR,
ENTY_MNEMONIC,
ENTY_INTEGERTOTAL,
ENTY_INTEGERVECTOR);

ENTY _DESIGNATOR represents the structure from which you want to get a list of
integers.

ENTY _MNEMONIC describes which integer list you are requesting. The allowable
mnemonic and designator combinations are as follows:

Mnemonic

Installation Jnteger _All

Mixnumbers

Entity

All entities

Program

ENTY _ INTEGERTOT AL is the number of integers returned in the vector.

ENTY _ INTEGERVECTOR is the list itself.

GET INTEGER USING DESIGNATOR

4-10

You can use this service function to get a specific integer out of the structure represented
by a designator.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_INTEGER_USING_DESIGNATOR(ENTY_DESIGNATOR,
ENTY_MNEMONIC,
ENTY_INTEGER);

Parameters

ENTY _DESIGNATOR is the designator representing the structure from which you want
to get a specific integer.

8600 0650-000

Accessing Service Functions

ENTY_MNEMONIC describes which integer you are requesting. The allowable
mnemonic and designator combinations are as follows:

Mnemonic

Aggregate _ Response_Time

Cu rrent User Cou nt

I nsta lIation -' nteger _ All

Installation -,nteger_1

Installation _Integer _2

I nsta Ilation _I nteger _3

I nstalIation-,nteger_ 4

Last_ Response_Time

Logical_Station _ Number

Maximum User Count

Mixnumbers

Screen_Size

Total Transaction Count - -

Transaction _ Queu~_ Depth

Virtual_Terminal

ENTY _INTEGER is the integer returned by COMS.

GET NAME USING DESIGNATOR

Entity

Program

Window

All entities

All entities

All entities

All entities

All entities

Program

Station

Window

Program

Station

Program

Program

Station

You can use this service fUnction to convert a COMS designator to the COMS name for
that designator. For instance, you might want to know the name of the terminal that
sent a message if you use the terminal names as a unique key.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_NAME_USING_DESIGNATOR(ENTY_DESIGNATOR,
ENTY_NAME);

IfGET_NAME_USING_DESIGNATOR in a usercode inquiry receives the designator of
the superuser, then GET_NAME _ USINGJ)ESIGNATOR returns a name of 17 bIanks.
For more detailed information on superuser, refer to the Security Administration Guide.

Parameters

ENTY _DESIGNATOR is the designator. All designators are allowed.

8600 0650-000 4-11

Accessing Service Functions

ENTY _NAME is a string of 1 to 17 characters, except for station names, which are up
to 255 characters, where the name is to be returned by COMS. If the station name
returned by COMS is shorter than the user array, COMS fills the user array with blanks.

GET REAL ARRAY

4-12

- -
You can use this service function to get a data structure with no connection to any entity.
You can monitor response times on your system through the use of statistics.

Note: This service function cannot be used by the RPG programming
language. However, the results provided by this service function can
be covered by using the GET_INTEGER _ USING_DESIGNATOR
service function and performing a series of separate calls.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_REAL_ARRAY(ENTY_MNEMONIC,
ENTY _REALTOTAL,
ENTY_REALVECTOR);

Parameters

ENTY _MNEMONIC is the data structure that you are requesting. The allowable
mnemonic is Statistics. It returns a table, each entry of which has six elements as
follows:

• A designator for the entity for which the statistics are given

• The type of entity as follows:

Value Entity

1 Direct-window program

2 Remote-file program

3 MCSwindow

• Transaction queue depth (direct window only)

• Total transaction count

• Last response time in milliseconds (direct window only)

• Aggregate response time in milliseconds (direct window only)

This information is also provided by the Statistics window. However, if you want to
generate your own reports, the service function is available for your use. For more
information on the Statistics window, see the COMS Configuration Guide.

8600 0650-000

Accessing Service Functions

ENTY _ REALTOTAL is the total number of elements returned in the array - six times
the number of table entries for statistics.

ENTY _REAL VECTOR is the array where the information is returned from COMS. The
size of the array is six words for each running direct-window program plus six words for
each MCS window.

GET STRING USING DESIGNATOR

You can use this service function to get an EBCDIC string out of the structure
represented by the designator. This service function returns strings that you can have
set up as insta.nation data in the COMS Utility.

This service function is used to enable a multilingual program to communicate with
multiple stations by determining the language and convention attributes of the
stations. If an application program uses the GET_STRING_USING_DESIGNATOR
service function to retrieve the attribute for a station, and if the station uses the
default. system attribute, then the service function returns an error value of 4
(UMBRELLA_NONDATA_ERRORV).

For more information on the language and convention attributes, refer to the COMS
Configuration Guide.

The declaration in COMS is as follows:

INTEGER PROCEDURE GET_STRING_USING_DESIGNATOR{ENTY_DESIGNATOR,
ENTY_MNEMONIC,
ENTY_STRINGTOTAL,
ENTY_STRING);

Parameters

ENTY _DESIGNATOR is the designator representing the structure from which you want
to get the string.

ENTY _MNEMONIC describes which string you are requesting. The allowable
mnemonic and designator combinations are as follows:

Mnemonic Entity

CONVENTION Station

Insta lIation _ String_1 All entities

Installation _ String_2 All entities

I nstalIation_ String..:.. 3 All entities

Installation_String_ 4 All entities

Installation_Hex _1 All entities

Installation_Hex_2 All entities

LANGUAGE Station

8600 0650-000 4-13

Accessing Service Functions

ENTY_STRINGTOTAL is the number of valid characters in the string returned by
COMS.

ENTY_STRING is the string returned by COMS. This designator returns the requested
LANGUAGE or CONVENTION attribute string.

If either the LANGUAGE or CONVENTION mnemonic is specified, the station
designator obtains the corresponding station table index of the entry for that station.

After the station index has been determined, the station table entry is checked to
determine if the station is logged on. Ensuring the log-on status requires checking that
the STA UCODEINX field is set to a nonzero value. If the STA UCODEINX field is
set to zero, the procedure returns a value indicating a failure. lithe STA _ UCODEINX
field is set to a nonzero value, then the attribute string required is returned in
ENTY_STRING. If no other attribute has been specified, the system default attribute is
returned.

STATION TABLE ADD

This service function is used to add a station designator to the table. The table and the
station designator are passed to the procedure and a unique index is returned.

Note: This service function cannot be used by the RPG or Pascal
programming languages.

The declaration in COMS is as follows:

PROCEDURE STATION_TABlE_ADD (STATION_HASH,
STATION_DESIGNATOR);

Parameters

STATION_HASH is the table of station designators.

STATION_DESIGNATOR is the station designator to be added to the table.

STATION TABLE INITIALIZE

.4-14

This service function is used to initialize the station table into which the station index
values are placed. You pass to this procedure the table and a table modulus. (The table
is implemented as a hash table.) The modulus is used to determine the density and
access time of the table. For fast access and sparse table population, select a modulus
that is twice the maximum number of table entries. For slow access and compact table
population, select a modulus that is half the maximum number of entries.

Note: This service function cannot be used by the RPG or Pascal
. programming languages.

8600 0650-000

Accessing Service Functions

The declaration in COMS is as follows:

PROCEDURE STATION_TABLE_INITIALIZE (STATION_HASH,
SHMOD);

Parameters

STATION_HASH is the table of station designators.

SHMOD is the table modulus.

STATION TABLE SEARCH

The STATION_TABLE_SEARCH service function is used to locate a service designator.
This service function locates a service designator by receiving a station table and then
searching the available service designators within the table. If the service function
finds the service designator, the index to the table is returned. A return value of zero
indicates that the station designator was not found.

Note: This service function cannot be used by the RPG or Pascal
programming languages.

The declaration in COMS is as follows:

INTEGER PROCEDURE STATION_TABLE_SEARCH (STATION_HASH,
STATION_DESIGNATOR);

Parameters

STATION_HASH is the table of station designators.

STATION_DESIGNATOR is the station designator to be located.

TEST DESIGNATORS

You can use this service function to test whether a designator is part of a structure
represented by another designator. For example, when you pass a security designator
and a security-category designator to this service function, COMS tells you whether the
security category represented by the security-category designator is valid for the session
represented by the security designator. This service function can also be used for the
security designators of stations and usercodes.

The declaration in COMS is as follows:

INTEGER PROCEDURE TEST_DESIGNATORS(ENTY_DESIGNATOR_l,
ENTY_DESIGNATOR_2);

8600 0650-000 4-15

Accessing Service Functions

Parameters

ENTY_DESIGNATOR_l and ENTY_DESIGNATOR_2 represent the two entities you
are trying to match, or whose relationship you want to determine. The order in which
you pass the designators does not matter. Allowable combinations of designators are as
follows:

• Device-type list and device type

• Security category and security

4-16 86000650-000

Section 5
Processing Items

A processing item is a procedure you can use to process a message either before an
application program receives it or after an application program sends it. Only programs
that use the direct-window interface to COMS can receive and send messages that
use processing items. Processing items reside in processing-item libraries you create.
Processing items are written in ALGOL. However, any programming language that
ALGOL can call can use the ALGOL shell to write processing items. For information on
using the ALGOL shell to write processing items, see Appendix E.

To integrate processing items into your installation, you need to understand the
functions and interrelationships of the entities in the COMS configuration file. For more
information on COMS entities, see the Section 1, "Introduction to COMS." Also refer
to the COMS Configuration Guide for more information about the COMS entities and
what roles they play in message routing.

You can use processing items to preprocess and postprocess the messages that are
received and sent by the stations and programs in a data communications network. To
preprocess a message, the COMS configuration file must have been defined to apply a list
of processing items to a message before it is received by a program. Refer to the COMS
Configuration Guide for information on defining the configuration file. To postprocess
a message, specify programmatically which agenda you want applied to the message a
program is sending. Refer to Section 3, "Communicating with COMS through Direct
Windows," for more information on the necessary programming steps.

The following are among the possible uses for processing items:

• Translating a message from one format into another

• Generating multiple rp.essages to be received or sent from a single message

• Redirecting a message to a destination different from the one indicated by the
system configuration or specified programmatically

• Segmenting long messages into several shorter messages, or grouping several short
messages into one large mes~e

• Performing security checks on messages

• Auditing messages

• Formatting input and output messages

For a processing item to process a message, the message must be received or sent
through a COMS direct window and must be associated with an agenda. You can apply
processing items only by using agendas, because programs you write cannot directly
call processing items. Refer to Section 3, "Communicating with COMS through Direct
Windows," for information about the direct-window interface to COMS and for the
function of agendas in message routing, preprocessing, and postprocessing.

8600 0650--000 5-1

Processing Items

The next two parts of this section, "How Processing Items Alter Message Data" and
"Creating a Processing-Item Library," provide a description of how processing items
work and what structures are necessary before you can write processing items. For a
discussion of how to write processing items, refer to "Creating a Processing Item Using
the ALGOL Specification" in this section.

How Processing Items Alter Message Data
The actual preprocessing or postprocessing of a message occurs when the COMS
Agenda Processor library passes the message data and the associated header to a
processing-item library. The route a message takes to reach the Agenda Processor
library differs depending on whether the message is to be preprocessed or postprocessed.
The following subsections describe the routes that messages take to reach the Agenda
Processor library and the role the library plays in message processing.

Routing of a Message for Preprocessing

When an incoming message first enters the COMS system, the COMS Router library
determines which agenda to apply to the message. If the message contains a trancode,
then the trancode specifies the agenda. If the message does not contain a trancode, then
the Router library applies the default input agenda of the window to which the message
is destined.

An agenda must specify the destination for the message and can specify a list of
processing items to be applied to the message. According to the destination specified
by the agenda, the Router library places the message in the queue of the destination
program. When the destination program executes a RECEIVE statement, the
transaction processor (TP) library or the database (DB) library is called automatically.
Next, the TP or DB library determines whether any processing items need to be applied
to the message in the queue. If processing items do need to be applied, the TP or DB
library calls the COMS Agenda Processor library.

Refer. to "How the Agenda Processor Handles a Message" later in this section to find
out what actions the Agenda Processor library takes when it is called by the TP or DB
library. The actions taken by the Agenda Processor library are the same regardless of
whether a message is being preprocessed or postprocessed.

Routing of a Message for Postprocessing

5-2

When a program executes a SEND statement to send a message out to a station or
another program, the TP or DB library is called automatically. Next, the TP or DB
library determines what agenda is associated with the message. An agenda must have
been specified either programmatically in the Agenda Designator field of the output
header before the SEND was executed or by specification of'a default output agenda for
the window. If no agenda was specified, the TP or DB library applies the default agenda
of the direct window that is sending the message.

Sending a program-to-station message is the simplest case of routing an outgoing
message. In this case, if the specified agenda contains a processing-item list, the TP or

8600 0650-000

Processing Items

DB library calls the Agenda Processor library before sending the postprocessed message
to its destination.

For a program-to-program message, the TP or DB library places the outgoing message
into the queue of the destination program. When the destination program executes a
RECEIVE statement, the TP or DB library calls the Agenda Processor library if the
specified agenda contains a processing-item list.

If you route an outgoing message by trancode, you must have specified, either in the
Agenda Designator field of the output header of the program or as the default output
agenda for the window, an agenda with no processing-item list whose destination is
INPUT_ROUTER. Next, the TP or DB library replicates the logic of the Router library
to determine which agenda is associated with the trancode in the message. Once the
agenda is known, the TP or DB library calls the Agenda Processor library if the agenda
contains a processing-item list, before sending the message to its destination. Refer to
"Routing Messages by Specifying a Destination" and "Routing Messages by Trancode"
in the Section 3, "Communicating with CaMS through Direct Windows," for more
information about specifying INPUT_ROUTER as an agenda.

The following subsections describe what actions the Agenda Processor library takes
when it is called by the TP or DB library. The actions taken by the Agenda Processor
library are the same regardless of whether a message is being preprocessed or
postprocessed.

How the Agenda Processor Library Handles a Message

Only the TP or DB library can call the Agenda Processor library in response to an
incoming message entering CaMS or a program executing a SEND statement. When
the TP or DB library calls the Agenda Processor library, it passes to the Agenda
Processor library the message data and associated header for the message being
preprocessed or postprocessed.

If the specified agenda contains a processing-item list, the Agenda Processor 'library calls
each processing item on behalf of the message, passing as parameters the message data
and the associated header. Thus, the processing item can modify the memory areas,
called the message data array and the header array, which are declared in the program
that is receiving or sending a message.

When a single processing item completes all its processing tasks, it exits back to the
Agenda Processor library. If the Agenda Processor library calls a second processing item,
the second item sees the same memory areas as they were modified by the previous
processing item. When all processing items in a list are completed, the Agenda Processor
library exits back to the TP or DB library, which exits back to the program executing a
RECEIVE statement or a SEND statement.

8600 0650-000 5-3

Processing Items

Example of Processing Items Used for Postprocessing

Following is an example of three processing items in a processing-item list that work
together to postprocess a message:

• The first processing item fetches instructions from disk for creating a particular
format.

• The second processing item uses the instructions to create the format and the
message that the user receives.

• The third processing item stores the message on disk so it can be recalled if needed.
When the third processing item completes its task, COMS automatically sends the
format to the user's terminal.

Creating a Processing-Item Library
You must create a processing-item library before writing individual processing
items. The following paragraphs discuss the conventions to follow when creating
processing-item libraries and how to choose a library configuration.

Conventions for Creating Libraries

5-4

Follow these conventions when you create processing-item libraries for a
multiple-program environment:

1. Write processing-item libraries in ALGOL only.

2. Use these ALGOL library attributes when writing the library code:

$SET SHARING = SHAREDBYRUNUNIT

FREEZE (PERMANENT)

Refer to the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation for information about writing ALGOL libraries.

3. One processing-item library cannot call another processing-item library that is
known to COMS.

4. An application program cannot directly call a processing-item library. Only a
COMS internal library called the Agenda Processor library can directly call a
processing-item library.

5. A program written in a language other than ALGOL can make use of
processing-item libraries if the language has a library interface. Although no
program except the Agenda Processor library can directly call a processing-item
library, a language must have a library interface in order to use the direct-window
interface to COMS.

8600 0650-000

Processing Items

Choosing a Library Configuration

There are two basic configurations you can use when creating processing-item libraries:

• Multiple libraries that each contain only a few entry points

• A single library, or only a few libraries, that each contain numerous entry points

These configurations are described in the following text. Read this information before
choosing a library configuration.

Creating Multiple Libraries Containing Few Entry Points

The advantages and disadvantages of creating multiple libraries that each contain only a
few entry points are as follows:

• Multiple libraries are easy to maintain. If you include as few entry points as possible
in each library, then changing, adding, or deleting libraries or entry points has little
impact on other system structures.

• Multiple libraries require more memory than a single library that contBin:s all
combined entry points.

Creating a Single Library with Multiple Entry Points

The advantages and disadvantages of creating one library, or only a few libraries,
containing multiple entry points are as follows:

• Using few libraries minimizes the number of memory stacks running on your system.

• If all functions that you want performed share a common state or common
declarations, such as a common file declaration, then making all these functions
entry points of the same library is efficient and might be mandatory in some cases.

• An entry point of a processing-item library can call other entry points or internal
procedures of the same library. These entry points and procedures can share
common logic. In contrast, an entry point of one processing-item library cannot
share logic with or call an entry point of another processing-item library.

Example of a Single Library Containing Multiple Entry Points

Following is an example of a processing-item library with two entry points that can
refresh a screen if for some reason the original screen is lost:

• One entry point is called right after the original screen is transmitted to the terminal
of the user. This is a postprocessing entry point that saves a copy of the screen on
disk.

• If the user's terminal must be turned off and then turned back on, the REFRESH
command is entered.

86000650-000 5-5

Processing Items

• The second entry point of the processing-item library detects the entry of the
REFRESH conunand, and retrieves the copy of the screen that is saved on disk.
Then COMS automatically sends the copy of the screen to the user's te~minal.

In this case, there are two entry points in one processing-item library because both entry
points share a common declaration for the disk file.

Creating a Processing Item Using the ALGOL
Specification

5-6

You should write your processing item in ALGOL. However, any programming
language that ALGOL can call can use the ALGOL shell to write processing items. For
information on using the ALGOL shell to write processing items, see Appendix E.

To create the processing item, use the following ALGOL specification:

REAL PROCEDURE PROC_ITEM(STATE,
HEADER,
USER_DATA,
TEXT_I,
TEXT_2,
OUTPUT_PROC);

REAL STATE;
ARRAY HEADER[0];
EBCDIC ARRAY USER DATA[0], TEXT 1[0],

TEXT_2 [0J; -
REAL PROCEDURE OUTPUT_PROC(STATE,

HEADER,
TEXT_I,
TEXT_2);

BEGIN

END;

REAL STATE;
ARRAY HEADER[0];
EBCDIC ARRAY TEXT_l[0], TEXT_2[0J;
FORMAL;

Use this REAL procedure to declare the required parameters for each processing
item you create. The required parameters are STATE, HEADER, USER_DATA,
TEXT _1, TEXT _ 2, and OUTPUT _ PROC. Although you can name the procedure and the
parameters anything you wish, you must declare the parameters in the order shown
above. The Agenda Processor library passes these parameters to your processing item
when submitting a message for processing.

Whether or not you intend to use all the parameters shown in the specification, you must
declare all of them, including the formal procedure called OUTPUT _ PROC. Even if you

8600 0650-000

Processing Items

want a processing item to do nothing but call OUTPUT _PROC, you must declare the
ent~e PROC _ITEM procedure.

The Agenda Processor library passes each of the six parameters when calling a
processing item so that the processing item can modify the message data. Each
parameter is described in the following subsections.

STATE Parameter

The STATE parameter is a REAL variable. One of its purposes is to indicate which one
of the following parameters holds the newest message data:

• USER DATA

• TEXT 1

• TEXT 2

When the Agenda Processor library calls a processing item, it sets the value of
STATE.[15:02] to tell the processing item where the message data is. The Agenda
Processor library also sets STATE.[07:08] to a value of 0 (zero) or 1 to indicate whether
the message is being received or sent. Finally, the Agenda Processor library sets
STATE.[13:06] to the index of the first word of the Conversation Area field in the
HEADER parameter.

A processing item must change the value of STATE.[15:02] to one of the values defined
in Table 5-1 whenever it moves the newest message data from one'data area to another.
If it does not modify the message data at all, do not change the value of any field in the
STATE parameter.

Location

STATE.[07 :08]

STATE.[13:06]

8600 0650-000

Table 5-1. State Parameter Values for Processing Items

Value

o

1

Meaning

This message is received by an application program
executing the RECEIVE <input header name>
statement.

This message is sent by an application program
executing the SEND <output header name> statement.

This field contains the index of the first word of the input
Conversation Area field in the HEADER parameter.

continued

5-7

Processing Items

Table 5-1. State Parameter Values for Processing Items (cont.)

Location Value

STATE.[15:02] o

1

2

STATE.[23:08]

STATE.[47:24]

Meaning

The USER_DATA parameter contains the newest
message data. If a processing item is placing new
message data into the USER_DATA parameter,,then the
processing item must set STATE.[15:02] to a value of 0
(zero) to inform the Agenda Processor library that that
the newest message data are now in the USER_DATA
parameter.

The TEXT_1 parameter contains the newest message
data. If a processing item places new message data into
the TEXT _1 parameter, then the processing item must
set STATE. [1 5:02] to a value of 1 to inform the Agenda
Processor library that the newest message data are now
in the TEXT_1 parameter.

The TEXT_2 parameter contains the newest message
data. If a processing item places new message data into
the TEXT 2 parameter, then the processing item must
set STATE. [1 5:02] to a value of 2 to inform the Agenda
Processor library that the newest message date are now
in the TEXT_2 parameter.

This field is reserved for use by COMS.

Processing items use this field to pass information to
other processing items. COMS initializes this field to a
value of 0 (zero) prior to calling the first processing item.

Between calls to other processing items, COMS does not
change the value of STATE.[47:24]. COMS preserves
the changes made to the message data by one
processing item until the next processing item is called.

HEADER Parameter

5-8

The HEADER parameter is an array designed to contain the header passed by the
program on whose behalf the processing item has been called. When calling a processing
item, the Agenda Processor library passes to the HEADER parameter a 'copy of the
header in the program that is receiving or sending a ~essage.

The Agenda Processor library passes a copy of the input header when the message has
yet to be received by, the program. The Agenda Processor library passes a copy of the
output header when the message is being sent by the program. Refer to Section 3,

8600 0650-000

Processing Items

"Communicating with COMS through Direct Windows," for more information about the
the input and output headers.

A processing item can modify fields within the HEADER array so that the HEADER
contains the correct descriptive information when the processed message is received or
sent by a program.

Updating Input Header Fields

When the HEADER parameter is an input header, you must update the following fields
of the input header if these conditions apply:

• The Text Length field of the input header if the processing item changes the length
of the message data

• The Conversation Area field of the input header if you wish to pass additional
information to a program or another processing item

Updating Output Header Fields

When the HEADER parameter is an output header, you must update the following fields
of the output header if these conditions apply:

• The Text Length field of the output header if the processing item changes the length
of the message data

• The Agenda Designator field of the output header if you wish to specify an agenda
that differs from the agenda originally specified in output header of the application
program

• The Destination field of the output header if you wish to specify a destination
that differs from the destination originally specified in the output header of the
application program

• The Conversation Area field of the output header if you wish to pass additional
information to a program or another processing item

Refer to Section 3, "Communicating with COMS through Direct Windows," for
descriptions of fields within the input and output headers. Refer to the definition of
the OUTPUT_PROC parameter in this section for more information about specifying
destinations for processed messages.

USER DATA Parameter

The USER_DATA parameter is an EBCDIC array that can contain the message data
that is to be preprocessed or postprocessed. When calling a processing item, the Agenda
Processor library passes in the USER_DATA parameter a pointer to the message data in
the destination program.

For a message that is to be postprocessed, do not modify the message data while it is in
the USER_DATA parameter, because doing this would modify the message area of your

8600 0650-000 5-9

Processing Items

program. Moreover, modifying the message data in USER_DATA could adversely affect
subsequent sending of messages and reproducibility during a synchronized recovery. In
addition, you might need to use the original data more than once to generate multiple
messages for the same transaction.

Move the message data into the TEXT_1 and/or TEXT_2 parameters (described later
in this section) when you want to modify it. Use the STATE parameter to inform the
Agenda Processor library as to which parameter contains the newest message data at
a particular time. When the value of STATE. [15:02J is 0 (zero), the USER_DATA
parameter contains the newest message data.

TEXT 1 and TEXT 2 Parameters

The TEXT _1 and TEXT _2 parameters are EBCDIC arrays. You can use these
parameters as scratch data areas for modifying the message data.

These parameters each have an initial size of one character. Each must be resized with
the RESIZE verb prior to being used. A processing item should always check the size
of the TEXT _lor TEXT _ 2 parameter before placing message data into it, because
the same arrays are reused for each copy of a program that is sending preprocessed
messages.

If the processing item changes the length of the message data while it is in the TEXT_1
or TEXT _ 2 parameter, you must update the Text Length field in the appropriate header.
Refer to the definition of the HEADER parameter earlier in this section for more
information about updating fields in the header.

The processing item must change the value ofSTATE.[15:02] if the processing item edits
or reformats the message data from the USER_DATA parameter to a scratch area, or
from one scratch area to the other. Set STATE.[15:02] to one of the following values to
let the Agenda Processor library know the new location of the newest message data:

• A value of 1 if the TEXT _1 parameter holds the newest message data

• A value of 2 if the TEXT _ 2 parameter holds the newest message data

OUTPUT PROC Parameter

5-10

The OUTPUT _ PROC parameter is a formal REAL procedure of the Agenda Processor
library that must be declared in a processing item as follows:

REAL PROCEDURE OUTPUT_PROC(STATE,
HEADER,
TEXT_I,
TEXT 2);

REAL STATE;
ARRAY CD [e] ;
EBCDIC ARRAY TEXT_I[e], TEXT_2[eJ;
FORMAL;

8600 0650-000

Processing Items

When calling a processing item, the Agenda Processor library passes the name of the
OUTPUT _ PROe procedure as a parameter to the processing item. The primary
purpose of OUTPUT _ PROe is to generate multiple transactions based on a single
message that the Agenda Processor library has passed to the processing item. A
processing item must call OUTPUT _ PROe multiple times to generate multiple
transactions.

You can use OUTPUT _ PROe to do the following:

• Redirect a message to a destination that differs from the destination specified in the
header that the Agenda Processor library passed to the processing item. To do this,
modify one of the fields in the header that can specify a destination.

• Transmit the segments of a segmented message to a single destination.

• Send a single message to multiple destinations by calling OUTPUT_PROe once for
each destination. Specify the destinations by creating a header for each destination.

• Generate multiple messages and send them to a single destination by calling
OUTPUT _PROe once for each message.

• Generate multiple messages and send them to multiple destinations by calling
OUTPUT _ PROe once for each message and creating a header to specify each
destination.

Refer to "Passing an Input Header to OUTPUT _ PROe" and "Passing an Output
Header to OUTPUT _PROe" later in this section for more information about generating
new transactions by calling OUTPUT _ PROe multiple times. Having a program execute
the SEND statement multiple times is an alternative to having a processing item call
OUTPUT _ PROe multiple times.

Calling OUTPUT_PROC and Transmitting a Message

When a processing-item list contains several processing items, you usually wait until the
last item in the list has completed its tasks before transmitting the completely processed
message to its destination. There are two ways in which a processing item can transmit a
message to its destination:

• Call OUTPUT _ PROe explicitly, passing the parameters described later in "Passing
the Parameters to OUTPUT _ PROe."-

• Allow the Agenda Processor library to transmit the message automatically when the
last processing item in a processing-item list completes its tasks.

It is unnecessary to explicitly call OUTPUT _ PROe if you are transmitting a single
message to a single destination, because the Agenda Processor library can do it
automatically. This leaves you free to add, delete, or change the order of the items in a
processing-item list and be assured that the message will always be transmitted at the
end of the list.

Whether a processing item calls OUTPUT _ PROe explicitly or allows the Agenda
Processor library to transmit the message automatically, the message goes to one of the
following destinations:

8600 0650-000 5-11

Processing Items

• The originating station that is specified in the Station field of the input header, if the
processing item contains an input header in its HEADER parameter. This is the
most common destination.

• The station or program that is specified in the Destination field of the output header,
if the processing item contains an output header in its HEADER parameter.

• The destination associated with the agenda that is specified in the Agenda
Designator field of the output header, if the processing item contains an output
header in its HEADER parameter.

Passing the Parameters to OUTPUT_PROC

A processing item must pass the following parameters to OUTPUT _ PROC:

• STATE of type REAL

• HEADER of type Array

• TEXT _1 of type EBCDIC Array

• TEXT _2 of type EBCDIC Array

The types and semantics of these parameters are the same as for the STATE, HEADER,
TEXT _1, and TEXT _ 2 parameters of the PROC _ITEM procedure. You can pass to
OUTPUT_PROC the same parameters that Agenda Processor library passes to the
processing item, but you do not have to pass the same parameters. The processing item
must make all desired modifications to the message data and the input or output header
before calling OUTPUT _ PROC.

You pass either an input header or an output header to the OUTPUT _ PROC procedure,
depending on whether the message being processed is to be received or sent by an
application program. You can use OUTPUT _ PROC to generate new transactions
with either an input header ,or an output header, although different conventions apply,
depending on which header you are passing.

Passing an Input Header to OUTPUT_PROC

When a processing item passes an input header to OUTPUT _ PROC, the message can
be transmitted to a program but not to a station. A processing item should perform the
following tasks before calling OUTPUT _ PROC:

• Set STATE. [07:08] to a value of 0 (zero).

• Set STATE. [13:06] to the index of the first word of the input Conversation Area
field in the header being passed.

• Set STATE. [15:02] to a value of either 1 or 2 to indicate which parameter contains
the newest message data.

5-12 86000650-000

Processing Items

To allow your program to specify or change a destination when passing an input header,
choose one of the following methods:

• Place an agenda designator in the Agenda Designator field of the input header.

• Place a program designator in the Program Designator field of the input header.

• Place both an agenda designator and a program designator in the previously
mentioned fields of the input header. With this method, the program designator
specifies the destination program, while the agenda designator specifies the
processing-item list.

Do not specify an agenda whose destination is INPUT_ROUTER when you want to send
a message to another program. You must use one of the methods previously described to
specify the destination program.

Passing an Output Header to OUTPUT_PROC

When a processing item passes an output header to OUTPUT _ PROC, the message can
be transmitted to a station or a program. A processing item should perform the following
tasks before calling OUTPUT _ PROC:

1. Set STATE. [07:08] to a value of 1.

2. Set STATE. [13:06] to the index of the first word of the output Conversation Area
field in the header being passed.

3. Set STATE. [15:02] to a value of 0 (zero), 1, or 2 to indicate which parameter
contains the newest message data.

To specify or change a destination when passing an output header, choose one of the
following methods:

• Place an agenda designator in the Agenda Designator field of the output header.

• Place a program designator in the Destination field of the output header.

• Place both an agenda designator and a program designator in the Agenda Designator
and Destination fields of the output header. Using this method, the program
designator specifies the destination program, while the agenda designator specifies
the processing-item list.

If you do not specify a destination in the output header, the Agenda Processor library
transmits the message to the station or program that originated the current transaction.
COMS derives the identity of the originator from the input header associated with the
output header that was passed to the Agenda Processor library.

8600 0650-000 5-13

Processing Items

Caution

When you use a processing item to call OUTPUT _PROC, do not specify a default
output agenda in the output header of the processing'item. This procedure can
cause the processing item to produce recursive calls that eventually lead to a
stack overflow.

Formatting Output Messages
You can create a processing item that formats or reformats output messages in any way
you desire before they reach their destinations. However, COMS provides a simple,
predefined method for specifying or altering carriage control of output messages.

Altering Carriage Control for Output Messages

A processing item can specify or alter carriage control for an output message before the
message reaches its destination, regardless of whether the program or station that sent
the message has specified carriage control.

A direct-window program can specify carriage control or allow the COMS default
setting to be used. A COBOL74 application program can use the BEFORE/AFTER
ADVANCING option with the SEND statement to specify carriage control, or allow the
COMS default setting (advancing after one line) to be used.

Carriage Control Field Values

5-14

A processing item can reset bits [47: 16] in the carriage-control field of the o~tput header
of a direct-window program when the output header is passed to the processing item in
the HEADER parameter of the PROC _ITEM procedure.

Table 5-2 describes the possible values you will find in bits [47: 16] of the FIELDS word,
after the direct-window program sends a message and the processing item is called.
Change the values in bits [47: 16] according to your processing needs. The default for
carriage control is 0 (zero).

8600 0650-000

Bit

[32:1]

[33:1]

[34:1]

[37:3]

[38:1]

8600 0650-000

Processing Items

Table 5-2. Carriage Control Field Values

Value Meaning

1 No line advance.

o A line is advanced before or after the message text is
written to the output device, depending on the value of
bit [38:1].

1 No carriage return is done.

o A carriage return is done before or after the message text
is written to the output device, depending on the value
of bit [38:1].

1

o

1

2

1

A new page is required for the output device.

Bits [37:3] select an action requiring the use of bits
[47:8] as a parameter. All the actions indicated by bits
[37 :3] are taken before or after sending the message,
according to the value of bit [38:1].

No action is required that uses the value in [47:8] as a
parameter.

Bits [47:8] contain a line number. The cursor is set to
column 1 of this line before or after the message is sent,
depending on the value of bit [38:1].

Bits [47:8] contain the number of lines to be advanced,
in addition to the number of lines advanced by bit
[32:1]. The lines are advanced before or after the
message is sent, depending on the value of bit [38:1].

All interpretation of the carriage control fields should be
done before the message is sent.

o All interpretation of the carriage control fields should be
done after the message is sent.

continued

5-15

Processing Items

Bit

[39:1]

[47:8]

Table 5-2. Carriage Control Field Values (cont.)

Value

o

n

Meaning

This bit is currently unused, and must retain the value of
o (zero) set by COMS.' (The bit might be used by COMS
in future releases.)

Contains the number of lines to be advanced. Use of
this field depends on bit [37:3].

Providing for Processing-Item Results

5-16

Prior to the END statement that completes the tasks performed by your processing
item, include a statement for returning the REAL result of your processing-item
procedure. The processing item must provide such a result as an instruction to the
Agenda Processor library regarding the disposition of items in a processing-item list.

If the processing item does not provide a result, a default value of 0 (zero) is passed
to the Agenda Processor library. If the processing item calls the OUTPUT _ PROC
procedure, then OUTPUT _ PROC could call other processing items. When the last
processing item called by OUTPUT _ PROC completes processing, OUTPUT _ PROC
returns the result of the last processing item to the Agenda Processor library. This
result is one of the four REAL values described in the following table.

Table 5-3 contains definitions of the REAL values that a processing item can return in
the result word.

Location

PROC JTEM.[07 :08]

Table 5-3. Result Word REAL Values

Value Meaning

o Continue to process other items in the processing-item
li~. . .

1 Stop processing because there are no more items in the
processing-item list.

For a message sent by an application program, a value
of 1 means that the processing item prematurely
stopped its processing tasks. In this case, COMS assigns
a value of 96 to the Status Value field in the output
header of the program and returns the new~ message
date to the Agenda Processor library.

continued

8600 0650-000

Location

PROC -'TEM.[47 :39]

8600 0650-000

Processing Items

Table 5-3. Result Word REAL Values (cont.)

Value Meaning

2 Stop processing and return the newest message data to
the station that originated it. For a message yet to be
received by an application program, a value of 2 means
that COMS is transmitting the newest message data to
the originating station.

3

For a message sent by an application program, a value
of 2 means that the processing item prematurely
stopped its processing tasks. In this case, COMS assigns
a value of 96 to the Status Value field in the output
header of the program. By examining the conversation
area, you might be able to determine what caused the
processing ~asks to stop prematurely.

COMS returns this value only when a processing item
has explicitly called the OUTPUT _PROe procedure, and
OUTPUT_PROC has called a processing-item list. If a
processing item is missing from the list called by
OUTPUT _PROC, then COMS returns a value of 3 to the
processing item that originally called OUTPUT_PROC.

This field is reserved for use by COMS.

5-17

5-18 8600 0650-000

Section 6
I nteractive Recovery

Interactive recovery applies to application programs that update Data Management
System II (DMSII) databases and Semantic Information Manager (SIM) databases
through direct windows. Recovery through COMS is not supported in the Pascal
programming language.

Components of COMS Recovery
COMS recovery includes the following components:

• Protected input queues

• Two-phase transactions

• Concurrency

Protected Input Queues

Protected input queues assure that transactions waiting to be processed by application
programs are not lost in a halt/load. These input transactions are audited to disk
when they are received by COMS. All transactions that are not protected are lost in a
halt/load.

The protected input specification is made in the COMS Utility on an agenda-by-agenda
basis. For further information on input queue protection, see the COMS Configuration
Guide.

Two-Phase Transactions

Two-phase transactions consist of two phases. In the first phase, all resources are
locked (no records are freed). In the second phase, all resources are freed by the
END-TRANSACTION statement.

All transactions processed by application programs must be two-phase transactions to
guarantee reproducibility. For further details on two-phase transactions, see "Writing
Two-Phase Transactions" later in this section.

Concurrency

The database attribute "concurrency" implies that in the event of an abort or halt/load
recovery, all transaction states that have been completed are still reflected in the
database. No completed transaction states are backed out of the database. Concurrency
is a feature of a database and does not require intervention by a message control system
(MCS) to reapply transactions.

8600 0650-000 6-1

I nteractive Recovery

DMSII databases can run with or without concurrency. Concurrency is achieved
in DMSII by the Data and Structure Definition Language (DASDL) options
INDEPENDENTTRANS and REAPPLYCOMPLETED. The INDEPENDENTTRANS
option assures that all transactions processed against the database are two-phase
transactions. The REAPPLYCOMPLETED option assures that all transactions that
have completed transaction state are not backed out of a database after an abort or a
halt/load.

All transactions processed against DMSII databases that have the.
INDEPENDENTTRANS option set are by default two-phase transactions. That is, the
DMSII database software automatically converts a non-two-phase transaction into a
two-phase transaction with no change to the application programs.

All transactions processed against DMSII databases that do not have the
INDEPENDENTTRANS option set must be two-phase transactions. If you do not use
the INDEPENDENTTRANS and REAPPLYCOMPLETED options, the DMSII database
does not have concurrency control.

For more information on the 1NDEPENDENTTRANS and REAPPLYCOMPLETED
options, see the A Series DMSII Application Program Interfaces Programming Guide.

S1M databases always run with concurrency control. This is an integral part of the
software. Because of the presence of concurrency control in SIM, all transactions
processed against a SIM database are by default two-phase transactions. For further
information on 81M, see the InfoExec 81M Technical Overview.

Preparing to Use Interactive Recovery
To prepare you for using interactive recovery, the following information is provided:

• General conventions to follow when writing programs that update a database by
. means of two-phase transactions

• COMS actions when a program fails

• Requirements for a transaction-processing system that updates a database

• An overview of the COMS components that facilitate COMS recovery, and an
explanation of how recovery works

6-2 8600 0650-000

I nteractive Recovery

General Programmatic Conventions

In writing programs that run under COMS and use interactive recovery, you must use
the specific programmatic conventions explained in this section. Moreover, you need to
observe the following general programmatic conventions to ensure effective recovery and
perfect reproducibility:

• You must group all instructions together into a transaction, so that the program
enters transaction state using a BEGIN-TRANSACTION statement, performs the
update activity while in transaction state, and then exits transaction state using an
END-TRANSACTION statement.

Caution

Avoid using SEND and RECEIVE statements during transaction state
(between a BEGIN-TRANSACTION statement and an END-TRANSACTION
statement) or you might lose some of the data in your database.

All transactions that are to be included in interactive recovery, such as the COMS
header name included in DMS BEGINTRANSACTION and END TRANSACTION
statements, must occur after a RECEIVE statement has been executed.

• For databases not using the DASDL option INDEPENDENTTRANS, each
transaction must be a two-phase transaction. In the first phase, the transaction
should lock records but not free any. In the second phase, the transaction should
free records but not lock any. In databases with concurrency control, all transactions
are by default two-phase transactions.

• For proper recovery of messages after a database abort or program abort, the
program must first execute a RECEIVE statement to handle the recovery
transactions and then execute a SEND statement. If a SEND statement is executed
before a RECEIVE statement, the transactions are not resubmitted.

Updating by Using Transactions

All application programs that update an audited database must be restartable, that is,
able to resume processing where COMS directs them to after an interruption such as an
abnormal program termination or a system halt/load.

For databases without concurrency control, DMSII ABORT/RECOVERY ensures that
an interruption in processing does not leave the database with partially completed
transactions. After DMSII ABORT/RECOVERY completes, COMS retrieves information
from the DMSII restart data set that points to the last transaction completed by DMSII.
Because all transactions completed by COMS are recorded in the COMS transaction
trail, COMS can resubmit all the transactions that followed the last DMSII -completed
transaction. COMS resubmits the transactions to the appropriate programs in the
appropriate order. When the last transaction recorded in the transaction trail is
successfully reprocessed, COMS recovery is complete. Databases with concurrency

8600 0650-000 6--3

I nteractive Recovery

6-4

control do not encounter aborts. Next, COMS recommences to submit live transactions
to the database.

To perform an update to the database, an application program must place the database
into the condition called "transaction state." Transaction state refers to the time during
which all the updates required for a single transaction are performed. In an application
program, the BEGIN-TRANSACTION and END-TRANSACTION statements must
delimit the set of updates to the database that logically compose one transaction. DM8II
guarantees that either all or none of these updates will appear in the database as the
result of a database abort.

When you write update programs for audited databases, think. of your updates in terms
of transactions rather than as arbitrary changes to the database. A transaction is a
series of changes to the database that constitutes an indivisible, logical change. Write
each transaction as a group of one or more data-set updates that are performed in one
transaction-state cycle, causing the program to take the following steps:

1. Re~eive a message.

2. Make all preparations for the update.

3. Enter transaction state.

4. If the program is using a DMSII -oriented application, perform the update activity,
which can assign, delete, generate, insert, remove, or store information. If the
program is using 81M -oriented applications, perform the update activity, which can
assign, delete, exclude, include, insert, modify, select, or retrieve information.

5. End transaction state in one of the following ways:

• Without text. Then send the result to the originator of the transaction.

• With text that includes an implicit SEND statement.

6. Return to step 1 (receive another message).

Your program should perform this sequence once for each update transaction that is to
be applied to the database. The particular steps the program takes before entering
transaction state vary, depending upon the appliCation. In applications without
concurrency, these steps consist of locking or creating records and changing data-item
values in the work area of the program.

Every possible action that your program can do in preparation for the update should be
done prior to entering transaction state. For applications without ,concurrency, only the
storing, deleting and other record-update functions must be done during transaction
state. For all applications, once transaction state is entered, it must not be exited until
all updates associated with the transaction are performed. Transaction state should be
entered and exited only once per transaction.

If a program tries to use any of the six update statements when the program is not
in transaction state, the program is discontinued with an "INVALID OP" error. If a
program does not follow the sequence of steps listed in this subsection, COMS reports an
error message to the monitor station.

8600 0650-000

I nteractive Recovery

Writing Two-Phase Transactions

Every database includes a set of assertions, or consistency constraints, that data within
the database must satisfy. When the data preserve all the constraints, the database
is said to be consistent; otherwise, the database is said to be inconsistent. To ensure
that consistency can be achieved in a multiple-program environment, DMSII provides a
tool known as record-level locking, which allows a process to update a record only after
retrieving the record with an exclusive lock. Although other processes can concurrently
retrieve the record, record-level locking protects the record from updating by other
processes until after it is explicitly or implicitly freed.

In order for record-level locking to preserve consistency, a programmatic convention
known as the two-phase transaction must be observed. A transaction is two-phase if it
can be divided into a locking phase followed by an updating phase. During the locking
phase, the transaction locks records. During the updating phase, the transaction
updates records but does not free or lock any. Records are freed automatically at the end
of the updating phase.

After the last record is locked and until the first record is updated, the transaction is at
the mid-transaction point. If two-phase transactions are not used, reproducibility of
previous results and continued consistency of the database cannot be guaranteed when
recovery operations complete.

COMS Actions When a Program Fails
I

COMS can take a variety of different actions when a program fails during execution.
The following explanations show how COMS responds as it encounters different
statements. The first two lists show the order in which COMS encounters the
statements for an explicit SEND and an implicit SEND. Following those lists are
Tables 6-1 and 6-2 that show the points at which COMS can fail and the corresponding
actions that occur.

Order of Statements for an Explicit SEND

RECEIVE

BEGIN-TRANSACTION with HEADER

END-TRANSACTION

SEND

8600 0650-000 6-5

I nteractive Recovery

6-6

Order of Statements for an Implicit SEND

RECEIVE

BEGIN-TRANSACTION with HEADER

END-TRANSACTION with Text: SEND

END TRANSACTION

Table 6-1. COMS Actions When a Program with an Explicit SEND Fails

Point in Program Failure

Before a RECEIVE statement starts.

After a RECEIVE statement starts, but before
a BEGIN-TRANSACTION with HEADER
statement starts.

After a BEGIN-TRANSACTION with HEADER
statement starts, but before the
END-TRANSACTION statement starts.

After an END-TRANSACTION with HEADER
statement starts, but before the SEND
statement starts.

After a SEND statement starts.

Action

No action. Start program when next
transaction is to be delivered.

Start program and redeliver transaction with
a status 93 message.

Start program and redeliver transaction with
a status 93 message.

No action. Start program when next
transaction is to be delivered. (This means
that output might be lost because the SEND
is never done.)

No action. Start program when the next
transaction is to be delivered.

Table 6-2. COMS Actions When a Program with an Implicit SEND Fails

Point in Program Failure

Before a RECEIVE statement starts.

After a RECEIVE statement starts, but before
a BEGIN-TRANSACTION with HEADER
statement starts.

After a BEGIN-TRANSACTION with HEADER
statement starts, but before an
END-TRANSACTION with Text: SEND
statement starts.

Action

No action. Start program when next
transaction is to be delivered.

Start program and redeliver transaction with
a status 93 message.

Start program and redeliver transaction with
a status 93 message.

continued

8600 0650-000

I nteractive Recovery

Table 6-2. COMS Actions When a Program with an Implicit SEND Fails (cant.)

Point in Program Failure

After an END-TRANSACTION with Text:
SEND statement starts, but before an
END-TRANSACTION statement starts.

After an END-TRANSACTION statement
starts.

Action

Start program and redeliver transaction with
a status 93 message. (This means that
output might get delivered twice. The
duplicate can be handled by a processing
item.)

No action. Start program when next
transaction is to be delivered.

Note: The ABORT· TRANSACTION statement causes the current
transaction state to be exited without any updates. COMS does not
resubmit this transaction.

Requirements for Using Interactive Recovery

To run under COMS and use interactive recovery, a database-processing system must
include the following:

• One or more application programs that process transactions

• One DMSII database or one SIM database

• If a DMSII database is used, one restart data set within the DMSII database that
identifies restart records belonging to COMS

Possible configurations for data-base-processing systems that use interactive recovery
include these:

• One application program that updates one S1M database or one DMSII database
that is synchronized with COMS

• Multiple application programs that update one 81M database or one DMSII database
that is synchronized with COMS

To use synchronized recovery, you must create a restart data set that stores the data
needed for recovery. The role played by the restart data set, and instructions for
creating and using it, are given later in this section.

Note that COMS does not support modeled databases. For instance, if you have one
database (DB!), and then develop a new database (DB2) modeled after DB!, COMS
stores the restart records of DB2 in the restart data set of DB!. This mixing of records
prevents you from using synchronized recovery.

8600 0650-000 6-7

I nteractive Recovery

For databases without concurrency control, a DMSIIdatabase is synchronized with
COMS when DMSII and COMS do the following:

1. DMSII recovery restores the database to the last point in time when no programs
were in transaction state.

2. COMS resubmits all committed transactions to their respective application program
beyond the DMSII recovery point, in the order that they were originally processed
by multiple programs running asynchronously.

COMS Components That Facilitate Recovery

For each database that uses recovery, a COMS internal process called COMS
Control initiates a separate task called the database (DB) control program. Each DB
control program initiates a separate DB library. The DB library serves as the data
communications interface (DCI) library for J?rograms that are controlled by a common
DB control program. Therefore, the DB control program and the DB library work
together for each database to support the programmatic interface to GOMS and recovery
operations.

The transaction processor (TP) library is the DCI library that handles the COMS
interface to application programs that do not need synchronized recovery. The TP
library is initiated by COMS Control and does for these application programs what the
DB control program and the DB library do together for application programs that need
synchronized recovery.

Programs associated with the TP library can interface to one or more databases.
However, COMS does n~t participate in recovery for these programs.

How DB Control and the DB Library Work

The DB control program initiates all application pro~ams that use recovery with a
particular database. DB control can detect transaction-state aborts that occur while
your application programs are attempting to update the database. If the DB control
program does detect an abort, it initiates a recovery cycle and, if necessary, restarts each
application program.

In updating the database, application programs receive incoming messages and send
outgoing messages by calling an entry point known as DCI. This is an entry point of
the DB library that is associated with a particular DB control program. If a database
recovery is in progress, the program. receives a recovery transaction sent by the DB
library.

If a program attempts to call a DCI_ ENTRYPOINT associated with a control stack other
than its own, the program. is discontinued by COMS and an error message is displayed.

How the Restart Data Set and Transaction Trail Work

6-8

Every DB library has its own transaction trail, which is shared by all the application
programs assigned to the particular DB library. A transaction trail is a time-ordered,

8600 0650--000

I nteractive Recovery

logical audit trail that resides on disk and provides the data for reprocessing database
transactions in case of a transaction-state abort, system crash, or rollback. A transaction
trail actually consists of a series of files numbered 1 through N, with 1 being the oldest
file and N being the newest file.

When a transaction-trail file is full, COMS closes the file and opens another one,
incrementing the file number by 1. Alternatively, an operator can use the COMS
DATABASE < database name> TRAIL CLOSE command to close the current
transaction trail for a given database and open a new one, whose number is incremented
by 1. COMS automatically causes a database SYNC point when a transaction trail is
closed.

For the multiple-program environment, where preserving the order in which update
transactions occur is essential to full recovery, COMS provides an efficient way to store
and use data for reprocessing the transactions in the correct order. COMS stores
restart information in the transaction trail based on the order of occurrence of the
END-TRANSACTION statement.

Each transaction-trail record contains a copy of the COMS header and message area as
they appeared in a particular program at the moment that the END-TRANSACTION
statement was executed for a particular transaction.

Caution

Changing the current transaction trail file number on the Database Activity menu
of the COMS Utility might make recovery of records in existing files impossible.
Refer to the COMS Configuration Guide for further information.

The remainder of this section presents the following programming information for
DMSII databases with and without concurrency and for SIM databases, which always
include concurrency:

• Interactive recovery with DMSII databases

• Interactive recovery with SIM databases

Interactive Recovery with DMSII Databases
Interactive recovery with DMSII databases can be used either with or without
concurrency. Interactive recovery without concurrency is referred to as synchronized
recovery. Synchronized recovery is a COMS function that resubmits transactions to the
database application program after a transaction-state abort, system crash, or rollback.
It is called synchronized recovery because it reprocesses transactions in the same order
that they were originally processed by multiple programs running asynchronously. The
recovery process is slightly different, depending on the kind of interruption that has
occurred.

8600 0650-000 6-9

I nteractive Recovery

If a transaction state abort occurs, first, DMSII recovery restores the database to the
last point in time when no programs were in transaction state. Next, CaMS resubmits
all transactions already committed to the database that occurred beyond the DMSII
recovery point. Last, CaMS resubmits all in-process transactions, that is, those
transactions that have reached the system but have not yet reached the database. If
a system crash or rollback occurs, the first two steps are the same as in the case of a
transaction-state abort, but in the third step CaMS resubmits all transactions protected
by input queue protection.

For information on input queue protection, see the COMS Configuration Guide. For
information on archive operations, see the COMS Operations Guide.

To use interactive synchronized recovery, your direct-window program must include
specific synchronized recovery code, as well as your usual message processing code. This
section provides general guidelines and specific instructions for using synchronized
recovery.

In databases that have concurrency control set, once a transaction has been committed
to the database, that is, it is past the END-TRANSACTION statement, it is not backed
out of the database. For example, if three programs are currently in transaction state
and one of the programs terminates in transaction state, the other two transaction states
are allowed to complete. The two completed transaction states are not backed out of the
database.

This does not mean that these application programs do not need COMS recovery. Three
recovery situations that require CaMS/database synchronization are

• Reprocessing an aborted transaction

• Processing messages held in an input queue of the program

• Archival recovery

Reprocessing an Aborted Transaction

An aborted transaction is a transaction that has not completed successfully, due to
program termination. CaMS resubmits this transaction to the application program with
an error in the Status field of the input header. For information on appropriate error
messages, refer to Appendix A

Processing Messages Held in the Input Queue of the Program

Mer a halt/load and the database has recovered, CaMS submits all transactions in the
application queues. Only those transactions in protected input queues are submitted.
For information on input queue protection, see the COMS Configuration Guide.

Archival Recovery

6-10

Archival recovery is the reprocessing of transactions from the transaction trail, typically
done after a database has been repositioned through a DMSII rollback. COMS

8600 0650-000

I nteractive Recovery

resubmits the transactions to the application in the order the transactions were
originally processed against the database.

Refer to "Creating a Restart Data Set" in this section for information about the fields in
the restart data set that you need to create. Refer to Section 3, "Communicating with
CaMS through Direct Windows," for information about the CaMS input and output
headers.

Writing Interactive Recovery Programs Using OMSII
This subsection provides the programming code for using recovery with DMSII
databases. A sample of the program flow is presented, highlighting the six subroutines
necessary for synchronized recovery. There are two possible main loops in the
interactive recovery program, one with an explicit SEND statement and the other with a
SEND statement built into the END-TRANSACTION subroutine. Also, note that the
subroutines INITIALIZE _ COMS, BEGIN-TRANSACTION, END-TRANSACTION,
and EXIT _ COMS are different, depending on the release and features you are using.
To use the features in the current release of DMSII, you need to use the current
release of CaMS. Programs using concurrency control will not encounter aborts.
Programs without concurrency control might receive resubmitted END-TRANSACTION
subroutines.

Creating a Restart Data Set

In addition to the direct-window program containing synchronized recovery coding, you
must create a restart data set. When the database administrator defines a database that
your programs update, he or she must create a restart data set containing three fields
that are associated with three specific attributes.

Following is an example of the Data and Structure Definition Language (DASDL)
description for a restart data set that must be created for each DMSII database updated
by programs that run under CaMS and need synchronized recovery:

RESTART-OS RESTART DATA SET
(
ROS-IO ALPHA(6) COMS-IO;
ROS-PROG REAL COMS-PROGRAM;
ROS-LOCATOR REAL COMS-LOCATOR;

) ;

These fields of the restart data set are used for the recovery of direct-window programs
and are maintained by CaMS. COMS sets the val':le of RDS _ID to ONLINE for all the
transactions generated by direct-window programs. In programs that are not COMS
programs, such as batch programs, you can use these fields as long as you do not set the
value of RDS _ill to the value ONLINE.

You are free to choose any valid DASDL names for the restart data set and the three
fields in it, but you must do the following:

8600 0650-000 6-11

Interactive Recovery

1. Be sure that the names in DASDL are the same as the names in your initialization
routine.

2. Use the data types indicated in the example to define each field.

3. Identify each field directly to the DASDL compiler and indirectly to COMS by
including these attributes with exactly these spellings:

• COMS-ID

• COMS-PROGRAM

• COMS-LOCATOR

4. If you have a sparuring set on the restart data set, you must also allow duplicates and
specify an initial value for the implicit keys in DASDL.

COMS must create and store a master recovery record in the restart data set of any
database updated by a 'COMS transaction processor. If the restart data set contains
any required items or any other special requirements that COMS cannot satisfy, the
CREATE and STORE procedures of the master recovery record will fail. This failure
also can produce negative results on subsequent synchronized recoveries. To prevent
these potential results, define any specially required items with INITIAL VALUE clauses
inDASDL.

Using Exception-Condition Statements and DMTERMINATE

6-12

Using exception-condition statements in your steps for closing a database is not
recommended, because your program should terminate abnormally if a database error
is detected during the database close. If your program does not terminate" abnormally
under these circumstances, recursive aborts of the database could.occur. If you must use
exception-condition statements in your steps for database close, then your program
should also call DMTERMINATE for those exceptions not specifically handled by your
program.

DMTERMINATE is a system-level DMSII procedure that you can invoke at any time
to display a standard, recognizable error message and to discontinue the application
program. For information on the syntax in your programming language to call
DMTERMINATE, see the appropriate language manual.

U suaIly, DMTERMINATE should be the last procedure your program calls after it
checks all other exception conditions that it specifically handles. The DMTERMINATE
procedure returns the same values and results that would occur if the program had not
intercepted the error in the first place - it displays a standard system error message and
terminates the program.

DMTERMINATE is not intended as a method of handling common errors such as
NOTFOUND. It is provided as a way out for programs that encounter unexpected
errors, such as system errors or I/O errors.

As a general rule, an application program should go to end of task (EOT) once the
database that is to be synchronized with COMS is closed.

8600 0650-000

Interactive Recovery

Exceptions on the close of a DMSII database with concurrency control do not affect any
of the completed transaction states of the interactive application program. By default,
once a transaction has been committed to the database, it will not be backed out due to
an abort or a halt/load recovery.

For DMSII databases with concurrency, the ABORT-TRANSACTION statement can be
used to discontinue the current transaction state. If this statement is executed by an
application program, the current transaction will not be resubmitted by COMS.

For further information about the ABORT-TRANSACTION statement, refer to the
DMSII Utilities Operations Guide.

Program Flow for Recovery Programs Using OMSII
Following is an example of the program flow for the declaration and main loop of the
interactive recovery program using DMSII databases, either with or without concurrency
control. The program is presented in pseudolanguage, which uses indentation to indicate
the scope of each statement.

8600 0650-000 6-13

I nteractive Recovery

Declaration and Main Program Loop

* DECLARATION PART *

% database must contain restart data set (RDS) %
% with the 10, PROG, and LOC fields.

database DATABASE;
COMS HEADER COIN;
COMS HEADER CDOUT;
DATA AREA MSG;

* MAIN LOOP *

INITIALIZE_COMS;
% main loop with explicit send %

WHILE CDIN.STATUS NOT = 99 DO
RECEIVE COIN INTO MSG;
IF COIN. STATUS NOT = 99 THEN

PREPARE_MSG; % your message-processing code %
BEGIN-TRANSACTION COIN NO-AUDIT;
UPDATE_DATABASE;
END-TRANSACTION CDOUT AUDIT RDS;
SEND CDOUT FROM MSG;

% or main loop with send built into end transaction %
WHILE CDIN.STATUS NOT = 99 DO

RECEIVE COIN INTO MSG;
IF CDIN.STATUS NOT = 99 THEN

PREPARE_MSG; % your message-processing code %
BEGIN-TRANSACTION COIN NO-AUDIT;
UPDATE_DATABASE;
END-TRANSACTION CDOUT USING MSG AUDIT RDS;

EXIT_COMS;

6-14 8600 0650-000

I nteractive Recovery

Subroutines Using COMS and OMSII (No RDS STORE)

If you have the current release ofeOMS and ofDMSII and do not use the DASDL
option RDS STORE, use the following subroutines for the main loop of your interactive
recovery program:

* INITIALIZE_COMS *

OPEN UPDATE DATABASE
ON EXCEPTION

DMTERMINATE;
ESTABLISH COMS LINK;
ENABLE INPUT COMS "ONLINE"

CREATE RDS; % required
MOVE "ONLINE" TO RDS.ID; % required
MOVE CDIN.PROGRAMDESG TO RDS.PROG; % required

% MOVE CDIN.RESTARTLOC TO RDS.LOC; % no longer required

**
* BEGIN TRANSACTION TIME (without concurrency) *
**

BEGIN-TRANSACTION COIN NO-AUDIT
ON EXCEPTION

IF ABORT THEN % not with INDEPENDENTTRANS option
GO_RECEIVE_TRANSACTION

ELSE IF AUDITERROR THEN % program logic error
DMTERMINATE % already in transaction state

ELSE IF DEADLOCK THEN
GO_RECEIVE_TRANSACTION

ELSE DMTERMINATE; % should not happen

* BEGIN TRANSACTION TIME (with concurrency) *

BEGIN-TRANSACTION CDIN NO-AUDIT RDS
ON EXCEPTION

8600 0650-000

IF AUDITERROR THEN
DMTERMINATE

% program logic error
% already in transaction state

ELSE·IF DEADLOCK THEN
GO_RECEI VE_TRANSACTI ON

ELSE DMTERMINATE; % should not happen

6-15

I nteractive Recovery

6-16

**
* END TRANSACTION TIME (without concurrency) *
**

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

IF ABORT OR DEADLOCK THEN % no abort with INDEPENDENTTRANS
option

GO_RECEIVE_TRANSACTION .
ELSE IF AUDITERROR THEN % program logic error

DMTERMINATE % not in transaction state
ELSE IF DATAERROR THEN

DMTERMINATE
ELSE DMTERMINATE; % should not happen

* END TRANSACTION TIME (with concurrency) *

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

IF AUDITERROR THEN
DMTERMINATE

ELSE IF DATAERROR THEN
DMTERMINATE

ELSE DMTERMINATE;

* EXIT COMS *

% program logic error
% not in transaction state

% should not happen

%.RDS handling no longer required %

CLOSE DATABASE;
IF DB_CLOSE_ERROR THEN

DMTERMINATE;
EXIT PR9GRAM;

8600 0650-000

I nteractive Recovery

Subroutines Using COMS and OMSII (ROS STORE)

If you have the current release of DMsn and of COMS and your database uses the
DASDL option RDS STORE, use the following program flow for interactive recovery.
This program includes the RECREATE RDS option after the ABORT or DEADLOCK
exception in both the BEGIN-TRANSACTION and END-TRANSACTION statements.

* INITIALIZE COMS *

OPEN UPDATE DATABASE
ON EXCEPTION

DMTERMINATE;
ESTABLISH COMS LINK;
ENABLE INPUT COMS liON LINE"

CREATE RDS;' % required
MOVE "ONLINE II TO RDS.ID; % required
MOVE CDIN.PROGRAMDESG TO RDS.PROG; % required

% MOVE CDIN.RESTARTLOC TO RDS.LOC; % no longer required

**
* BEGIN TRANSACTION TIME (without concurrency) *
**

BEGIN-TRANSACTION CDIN NO-AUDIT
ON EXCEPTION

IF ABORT THEN % not with INDEPENDENTTRANS option
RECREATE RDS; % unique for RDS STORE case
GO_RECEIVE_TRANSACTION;

ELSE IF AUDITERROR THEN % program logic error
DMTERMINATE % already in transaction state

ELSE IF DEADLOCK THEN
GO RECEIVE TRANSACTION - -

ELSE DMTERMINATE; % should not happen

* BEGIN TRANSACTION TIME (with concurrency) *

BEGIN-TRANSACTION CDIN NO-AUDIT
ON EXCEPTION

8600 0650-000

IF AUDITERROR THEN % program logic error
DMTERMINATE % already in transaction state

ELSE IF DEADLOCK THEN
GO_RECEIVE_TRANSACTION

ELSE DMTERMINATE; % should not happen

6-17

I nteractive Recovery

6-18

**
* END TRANSACTION TIME (without concurrency) *
**

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

IF ABORT OR DEADLOCK THEN % no abort with INDEPENDENTTRANS
option

RECREATE RDS; % unique for RDS STORE case
GO_RECEIVE_TRANSACTION;

ELSE IF AUDITERROR THEN % program logic error
DMTERMINATE % not in transaction state

ELSE IF DATAERROR THEN
DMTERMINATE

ELSE DMTERMINATE; % should not happen

* END TRANSACTION TIME (with concurrency) *

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

IF DEADLOCK THEN
RECREATE RDS; % unique for RDS STORE case
GO_RECEIVE_TRANSACTION;

ELSE IF AUDITERROR THEN % program logic error
DMTERMINATE % not in transaction state

ELSE IF DATAERROR THEN
DMTERMINATE

ELSE DMTERMINATE; % should not happen

* EXIT COMS *

% RDS handling no longer required %

CLOSE DATABASE;
IF DB_CLOSE_ERROR THEN

DMTERMINATE;
EXIT PROGRAM;

8600 0650-000

I nteractive Recovery

Interactive Recovery Programs with SIM Databases
This subsection provides the program code for using COMS recovery with SIM
databases.

A sample of the program flow is presented, highlighting the six: subroutines necessary for
COMS/SIM recovery. There are two possible main loops in the recovery program, one
with an explicit SEND statement and the other with a SEND statement built into the
END-TRANSACTION subroutine.

Using Exception-Condition Statements

As a general rule, an application program should go to end of task (EOT) once the
database that is to be synchronized with COMS is closed. Exceptions on the close of a
DMSII database with concurrency control do not affect any of the completed transaction
states of the interactive application program. By default, once a transaction state has
been committed to the database, it is not backed out due to an abort or a halt/load
recovery.

You can use the ABORT-TRANSACTION statement to discontinue the current
transaction state. If this statement is executed by an application program, the current
transaction is not resubmitted by COMS.

For information about error messages on program termination, or about the
ABORT-TRANSACTION statement, see the DMSII Utilities Operations Guide.

Declaration and Main Program Loop

Following is an example of the program flow for the declaration and main loop of a
COMS/SIM recovery program. The program is presented in pseudolanguage, which uses
indentation to indicate the scope of each statement.

* DECLARATION PART *

SEMANTIC database DATABASE;
COMS HEADER CDIN;
COMS HEADER CDOUT;
DATA AREA MSG;

8600 0650-000 6-19

I nteractive Recovery

* MAIN LOOP *

INITIALIZE_COMS;
% main loop with explicit send %

WHILE CDIN.STATUS NOT = 99 DO
RECEIVE COIN INTO MSG;
IF COIN. STATUS NOT = 99 THEN

PREPARE_MSG; % your message-processing code %
BEGIN-TRANSACTION;
UPDATE_DATABASE;
END-TRANSACTION CDOUT;
SEND CDOUT FROM MSG;

% or main loop with send built into end transaction %
WHILE CDIN.STATUS NOT = 99 DO

RECEIVE COIN INTO MSG;
IF CDIN.STATUS NOT = 99 THEN

PREPARE_MSG; % your message-processing code %
BEGIN-TRANSACTION;
UPDATE_DATABASE;
END-TRANSACTION CDOUT;

EXIT_COMS;

6-20 8600 0650-000

Section 7
Batch Recovery

This section describes a programming method for processing batch input in database
applications. Batch recovery through COMS is not supported in the Pascal programming
language.

You can use batch programs to process a set of transactions without continually
interacting.with the terminal. At any time, a batch program can be initiated by an
interactive transaction. The method of batch programming described in this section
allows batch processing and online processing to take place simultaneously. This method
also ensures the following:

• The batch job will be synchronized with online transactions.

• Recovery can be performed.

This method of batch programming requires all batch transactions to be invoked by an
incoming online transaction from a terminal or another program. All programs must be
run through COMS direct windows.

Before you begin the procedures in this section, read the descriptions of the
Conversation Area field of the input and output headers in Section 3, "Communicating
with COMS through Direct Windows."

Recovery Considerations
Batch recovery procedures require each transaction to be synchronized with the
COMS-generated transaction trail for the database. Your batch program must retain
enough information to know where to restart processing after database recovery and
COMS recovery complete.

For example, in a case in which you are using a batch file, this information might include
the batch file name and the actual key of the record that causes the update to be
performed.

Input to batch tranSactions can take one of three forms: the input transactions that
initiated the program; input transactions read from a tape, disk file, or database; and
transactions that are resubmitted during recovery.

To synchronize recovery between online programs and batch programs, the batch
programs must identify to COMS each transaction being performed. This is
accomplished by using the BEGIN-TRANSACTION WITH option, which allows COMS
to audit the input transaction on the transaction trail. In the event of a recovery, COMS
can then reprocess the online and batch transactions in the original order.

8600 0650-000 7-1

Batch Recovery

7-2

One way'to retain the information needed for recovery is to place that information in
the Conversation Area field of the input header before the program enters transaction
state. This information is used during recovery to determine which file and record the
last processed transaction came from and, thus, where to continue processing in the .
batch file. If the application is using a DMSn database, the information regarding batch
recovery should be duplicated in the restart data set record. If the application is using
a SIM database, the information regarding batch recovery should be duplicated in the
restart class. For information on classes, see the InfoExec 81M Technical Overview.

Data to be saved in the input header must be placed in the Conversation Area field
before executing a BEGIN-TRANSACTION statement. For batch programs, it is
sufficient to save the file name and the record number. The program can also place a
copy of the record in the message variable specified by the BEGIN-TRANSACTION
statement. If this were done during recovery, the program would not require the input
file to be available. This is an important operational consideration for sites that require
archival recovery.

Recovery data must also be saved in the database. This is necessary for those cases in
which COMS does not resubmit transactions to the batch application after a haltlload
(that is, no transactions for this batch.program have been rolled off the database), The
program must be able to restart from the information in the database. Therefore, the
batch program must also store in the database the restart information saved in the
Conversation Area field.

For every BEGIN-TRANSACTION and END-TRANSACTION statement, COMS
needs to be notified so that it can put the information into its transaction trail.
This requires COMS application programs that have enabled batch mode to use
the BEGIN-TRANSACTION statement that identifies the message variable. This
information is used for ordering and recovery purposes.

During recovery, in each resubmitted transaction (that is, each transaction for which
the Status field of the input header contains the value 92), the header and message
area appear as they did at the begin-transaction point when the transaction was
first processed. As a result, the batch file and record location that you placed in the
Conversation Area field of the input header when processing the record the first time are
resubmitted along with the message variable.

The following are the result-s produced by a batch transaction failure:

• Batch transaction failure during transaction state

When a batch transaction repeatedly fails after the mid-transaction point, it is
resubmitted with a value of 90 in the Status Value field of the input header.

If a batch program receives a value of 90 for a transaction, do not allow the program
to process the transaction, because that transaction caused the original series of
aborts.

• Batch transaction failure after transaction state

When a batch transaction repeatedly fails after a transaction occurs, it is
resubmitted' with a value of 80 in the Status Value field of the input header.

8600 0650-000

Batch Recovery

If a batch program receives a value of 80 for a transaction, do not allow the program
to restart a transaction immediately, because the completion of that transaction
initially caused the program repeated failures.

After the begin-transaction point, the message area and relevant portions of the header
should appear the same regardless of whether the program is in normal or recovery
mode. Therefore, the programming steps that you take after this point do not need to
differentiate recovery transactions from normal transactions.

For additional information on the restart data set and recovery, refer to Section 6,
"Interactive Recovery."

Programming for batch recovery differs, depending on whether or not your database has
concurrency control. The remainder of this section presents programming information in
the following subsections:

• Writing programs using batch recovery without concurrency

• Writing programs using batch recovery with concurrency

Writing Programs Using Batch Recovery without
Concurrency

This subsection provides the program flow and subroutines for programs that use batch
synchronized recovery. These are programs that access DMSII databases without
concurrency. The examples are presented in pseudolanguage.

A COMS batch program is initiated by an interactive transaction. This transaction can
be received only while a program is in interactive mode. The batch recovery program
first initializes batch mode to receive and process any transaction being recovered due to
a halt/load. It then changes to interactive mode to receive the transaction that initiated
the batch program. The program then switches to batch mode to process the batch data.
Finally, the batch program switches back to interactive mode to receive either another
interactive transaction or the COMS notification to go to end of task ..

In batch mode, the program does its processing until it gets an abort on a DMSII
statement. In response to the abort, the program has to receive the transactions that
were backed out by the database abort and reapply them to the database. This is done
while the program is still in batch mode. The transactions are identical copies of what
the program gave to COMS at the begin-transaction point in the message area. They
must provide enough information to simulate the original database update.

When the recovery is complete, the program restarts its batch processing, continuing
where it left off. The restart data set and/or the Conversation Area field of the input
header must provide enough information for the program to determine the restart
location for the batch process. Examples of the necessary information are file title and
record number if the program reads a disk file as input to the database, or a unique key
into the data set if the program scans through the database. When all the batch work is
done, the program goes back into interactive mode to receive either a new transaction or
the COMS notification to go to end of task.

8600 0650--000 7-3

Batch Recovery

Application recovery data must be stored in both the Conversation Area field of the
input header and the restart data set. Upon resubmission of messages, the application
program uses the recovery data stored in the Conversation Area field when the
transaction was originally processed. When a halt/load occurs, a transaction must have
been backed out of the database to be resubmitted by COMS. The application uses the
recovery data in the restart data set.

At initialization, the program can be in one of two operation modes. It might have been
brought into the mix because a new transaction was given to it. It might have been
restarted because it was running earlier and it aborted, the system halt/loaded, or the
database was rolled back for archival recovery. If the program was restarted, it does
not receive its initial transaction, but receives only the transactions supplied with the
BEGIN -TRANSACTION statement.

Declaration and Main Program Loop

7-4

Your program should start by declaring its database, headers, and data message area.
When it moves to the main loop, it should initialize the COMS interface and then handle
any recovery of batch processing that had not been completed. When it has finished
running any interrupted processing, the program should then handle any online input
from COMS that submits new batch runs, or it should terminate. Following is the
program flow for the declaration and main loop of the batch synchronized recovery
program. The examples are presented in pseudolanguage, which uses indentatiorfto
indicate the scope of each statement.

* DECLARATION PART *

database DATABASE;
COMS HEADER COIN;
COMS HEADER CDOUT;
DATA AREA MSG;

* MAIN LOOP *

INITIALIZE_COMS;
IF MY_BATCH_RESTARTED THEN

DO_BATCH_PROCESSING;
INITIALIZE_ONLINE_MODE
WHILE COIN.STATUS NOT = 99 DO

RECEIVE COIN INTO MSG;
IF COIN.STATUS NOT = 99 THEN

INITIALIZE_BATCH_MODE;
DO_BATCH_PROCESSING;

INITIALIZE_ONLINE_MODE;
EXIT_COMS;

8600 0650-000

Batch Recovery

Initializing COMS

This step of the batch synchronized recovery program should open the database to be
updated, establish a link to COMS, and initialize the restart data set. It should also find
the restart data set record for this program. For more information on initialization,
see Section 3, "Communicating with·COMS through Direct Windows." For more
information on the restart data set, see Section 6, "Interactive Recovery."

Following is the program flow for the initialization step of the batch synchronized
recovery program:

8600 0650-000

* INITIALIZE COMS *

OPEN UPDATE DATABASE
ON EXCEPTION

DMTERMINATE;
ESTABLISH COMS LINK;
ENABLE INPUT COMS "BATCH";
RESET MY_BATCH_RESTARTED;
% The program has just come up. It must check to see if any
% of its transactions have been rolled back. If transactions have
% been rolled back, then COMS resubmits them from the
% transaction trail. The CONVERSATION_AREA
% of such a resubmitted message can include the
% data necessary to simulate the database update.

RECEIVE CDIN INTO MSG
NO DATA

RECEIVE FOUND_RECOVERY_MESSAGE
ELSE
SET FOUND_RECOVERY_MESSAGE % COMS is resubmitting transactions

% that were rolled back.
SET MY_BATCH_RESTARTED; % After the resubmissions are

% complete, the remaining
% batch transactions
% must be completed.

7-5

Batch Recovery

% COMS might not have transactions to resubmit, but the batch update
% might have been incomplete during the last run. The program must
% check the RESTART DATA SET now.

LOCK RDS AT RDS. 10 = "0NLINE" AND % Note: ONLINE not BATCH.
RDS.PROG = CDIN.PROGRAMDESG

ON EXCEPTION
IF NOTFOUND THEN % No recovery need be done.

CREATE RDS % RDS area is created for later use.
% The following code is no longer required.
% MOVE "ONLINE" TO RDS. ID
% MOVE CDIN.PROGRAMDESG TO RDS.PROG
% MOVE CDIN.RESTARTLOC TO RDS.LOC
PLACE_USERDATA_IN_RESTART_REC

ELSE
DMTERMINATE % Some other DMERROR.

ELSE % Last run was incomplete.
SET MY_BATCH_RESTARTED; % The remaining batch transactions

% must be completed.
IF FOUND RECOVERY MESSAGE THEN % Finish all resubmitted transactions. - -

Initializing Interactive Mode

7-6

Interactive mode allows a program to receive nonrecovery transactions, and to
be signaled when to go to end of job (EOJ). It deletes an eventual batch mode
restart-data-set record. It reinitializes the restart data set to contain the interactive
designator of the program and informs CQMS about the mode change.

Following is the program flow for initializing the interactive mode in the batch
synchronized recovery program:

* INITIALIZE_INTERACTIVE_MODE *

BEGIN-TRANSACTION CDIN NO-AUDIT' RDS;
LOCK RDS AT RDS.ID = RDS.ID AND RDS.PROG = RDS.PROG

ON EXCEPTION

ELSE

IF NOT FOUND THEN
RECREATE RDS;
INITIALIZE RDS.MYRESTARTINFO;

ELSE DMTERMINATE

DELETE RDS;
ENABLE INPUT CDIN "ONLINE";
END-TRANSACTION AUDIT RDS;

8600 0650-000

Batch Recovery

Initializing Batch Mode

Initializing batch mode allows your program to receive only recovery transactions. This
program subroutine also informs CaMS of the switch from interactive to batch mode.
Following is the program flow for initializing batch mode within your batch synchronized
recovery program:

* INITIALIZE_BATCH_MODE *

ENABLE INPUT COIN "BATCW;

I nitial Batch Recovery

You can use the batch recovery subroutine to allow your program to participate in
the CaMS synchronized/archival recovery when it receives a recovery transaction in
INITIALIZE_caMS. This subroutine receives recovery transactions and updates a
database.

Following is the program flow for doing initial batch recovery within the batch
synchronized recovery program:

* 00 INITIAL BATCH RECOVERY * - - -

RESET NO_MORE_RECOVERY
WHILE NOT NO_MORE_RECOVERY DO

HANDLE_RECOVERY_TRANSACTION;
RECEIVE COIN INTO MSG

NO DATA
SET NO_MORE_RECOVERY;

Abort Batch Recovery

Use this subroutine to allow your program to participate in synchronized or archival
recovery when it discovers a database abort. The subroutine receives recovery
transactions and updates the database.

8600 0650-000 7-7

Batch Recovery

Following is the program flow for doing abort batch recovery within the batch
synchronized recovery program:

* DO_ABORT_BATCH_RECOVERY *

DO
RECEIVE CDIN INTO MSG

NO DATA
SET NO 'MORE RECOVERY

ELSE
HANDLE RECOVERY TRANSACTION - -

Handling the Recovery Transaction

Following is the subroutine for handling the recovery transaction within the batch
synchronized recovery program:

* HANDLE_RECOVERY_TRANSACTION *

SIMULATE_ORIGINAL_TRANSACTION;
MOVE MY_RESTARTINFO TO CDIN.CONVERSATION.RESTARTINFO;
BEGIN-TRANSACTION CDIN USING MSG NO-AUDIT RDS;
UPDATE_DATABASE;
MOVE MY_RESTARTINFO TO RDS.RESTARTINFO;
END-TRANSACTION CDOUT AUDIT RDS;

Batch Processing

7-8

You use the batch processing subroutine to update a database until an abort is detected
or the processing is done. This subroutine stores restart information necessary to
identify where to continue for recovery. This is done in both the transaction trail (using
the Conversation Area field of the input header) and in the restart data set. ,

8600 0650-000

Batch Recovery

Following is the program flow for batch processing within the batch synchronized
recovery program:

* DO_BATCH_PROCESSING *

DO
MOVE MY_RESTARTINFO TO RDS.RESTARTINFO;
MOVE MY_RESTARTINFO TO CDIN.CONVERSATION.RESTARTINFO;
BEGIN-TRANSACTION COIN USING MSG NO AUDIT RDS;
UPDATE_DATABASE;
END-TRANSACTION CDOUT AUDIT RDS;

UNTIL ALL_WORK_DONE;

CaMS and DMSII (No RDS STORE)

If you have COMS and DMSII and do not use the RDS STORE option, use the following
program flow for batch processing:·

* BEGIN TRANSACTION TIME *

BEGIN-TRANSACTION COIN NO-AUDIT USING MSG
ON EXCEPTION

IF ABORT THEN % not with INDEPENDENTTRANS option
GO_DO_BATCH_RECOVERY

ELSE IF AUDITERROR THEN % program logic error
DMTERMINATE % already in transaction state

ELSE IF DEADLOCK THEN
GO DO BATCH RECOVERY - - -

ELSE DMTERMINATE; % should not happen

* END TRANSACTION TIME *

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

IF ABORT OR DEADLOCK THEN % no abort with INDEPENDENTTRANS
option

GO_DO_BATCH_RECOVERY
ELSE IF AUDITERROR THEN % program logic error

DMTERMINATE % not in transaction state
ELSE IF DATAERROR THEN

DMTERMINATE
ELSE DMTERMINATE; % should not happen

8600 0650-000 7-9

Batch Recovery

COMS and OMSII (ROS STORE)

7-10

If you have the current release of DMSII and of COMS and your program uses the
DASDL option RDS STORE, use the following program flow for batch processing (note
the RECREATE RDS option after the ABORT exception in the BEGIN-TRANSACTION.
statement and after the ABORT or DEADLOCK exception in the END-TRANSACTION
statement):

* BEGIN TRANSACTION TIME *

BEGIN-TRANSACTION CDIN NO-AUDIT USING MSG
ON EXCEPTION

IF ABORT THEN % not with INDEPENDENTTRANS option
RECREATE RDS; % unique for RDS STORE case

.GO DO BATCH RECOVERY - - -
ELSE IF AUDITERROR THEN % program logic error

DMTERMINATE % already in transaction state
ELSE IF DEADLOCK THEN

GO_DO_BATCH_RECOVERY
ELSE DMTERMINATE; % should not happen

* END TRANSACTION TIME *

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

IF ABORT OR DEADLOCK THEN % no abort with INDEPENDENTTRANS
option

RECREATE RDS; % unique for RDS STORE case
GO_DO_BATCH_RECOVERY;

ELSE IF AUDITERROR THEN % program logic error
DMTERMINATE % not in transaction state

ELSE IF DATAERROR THEN
DMTERMINATE

ELSE DMTERMINATE; % should not happen

8600 0650-000

Batch Recovery

Exiting COMS

Use the following subroutine to exit COMS whether or not your program uses the
DASDL RDS STORE option:

* EXIT_COMS * (Database with or without RDS STORE)

% RDS handling no longer required if coming out of online mode %

CLOSE DATABASE;
IF DB_CLOSE_ERROR THEN

DMTERMINATE;
EXIT PROGRAM;

Writing Programs Using Batch' Recovery with
Concurrency

This section provides the program flow and subroutines for programs that use batch
recovery. These are programs that access DMSII databases with concurrency,
or programs that access SIM databases. These databases do not need additional
synchronized recovery programming.

A COMS batch program is initiated by an interactive transaction. This transaction can
be received only while a program is in interactive mode. The batch recovery program
first initializes batch mode to receive and process any transaction being recovered due to
a halt/load. It then changes to interactive mode to receive the transaction that initiated
the batch program.

The program then switches to batch mode to process the batch data. Finally, the
batch program switches back to interactive mode to receive either another interactive
transaction or the COMS notification to go to end of task (EOT).

At initialization, the program can be in one of two operation modes. It might have been
brought into the mix because a new transaction was given to it. If the program. was
restarted, it does not receive its initial transaction, but does receive only the transactions
supplied with the BEGIN-TRANSACTION statement. It might have been restarted
because it was running earlier and it aborted, because of a system halt!1oad, or because
the, database was rolled back for archival recovery.

Application recovery data must be stored both in the Conversation Area field of the input
header and in the restart class. Upon resubmission of messages, the application program.
uses the recovery data stored in the Conversation Area field when the transaction was
originally processed. When a halt!1oad occurs, no transaction is resubmitted by COMS
if it has not been backed out of the database. If no transaction is resubmitted to the
batch application program., but there is recovery data in the restart class, the application
program must start reprocessing from the data in the restart class.

8600 0650-000 7-11

Batch Recovery

If the program faults and gets terminated abnormally, COMS automatically restarts the
program. After enabling the BATCH option, the program must receive the transaction
that caused it to fault. This transaction has a status code of 90. Do not reprocess the
transaction, but rather evaluate the error message that is returned. The transaction is
an identical copy of what the program gave to COMS at the begin-transaction point in
the message area..

Once the transaction that caused the abort is processed, the program restarts its
batch processing, continuing where it left off. The restart class has to contain enough
information to allow the program to find where in the batch process to restart. For
information on classes, see the InfoExec 81M Technical Overview.

Examples of the necessary information are file title and record number if the program
reads a disk file as input to the database, or a unique key into the data set if the program
scans through the database. When all the batch work is done, the program goes back
into interactive mode to receive either a new transaction or the COMS notification to go
to end of task.

Declaration and Main Program Loop

7-12

Your program should start by declaring its database, headers, and data message area
When it moves to the main loop, it should initialize the COMS interface and then handle
any recovery of batch processing that had not been completed. When it has finished
running any interrupted processing, the program should then handle any online input
from COMS that submits new batch runs, or it should terminate.

Following is the program flow for the declaration and main loop of the batch recovery
progr~. The program is presented in pseudolanguage, which uses indentation to
indicate the scope of each statement.

8600 0650-000

* DECLARATION PART *

database DATABASE;
COMS HEADER CDIN;
COMS HEADER CDOUT;
DATA AREA MSG;

8600 0650-000

* MAIN LOOP *

INITIALIZE_COMS;
IF MY_BATCH_RESTARTED THEN

DO_BATCH_PROCESSING;
INITIALIZE_ON LINE_MODE
WHILE CDIN.STATUS NOT = 99 DO

RECEIVE CDIN INTO MSG;
IF CDIN.STATUS NOT = 99 THEN

INITIALIZE_BATCH_MODE;
DO_BATCH_PROCESSING;

INITIALIZE_ONLINE_MODE;
EXIT_COMS;

Batch Recovery

7-13

Batch Recovery

Initializing COMS

This step of the batch recovery program should open the database to be updated,
establish a link to CaMS, and initialize the restart class. It should also find the restart
class entity for this program. For more information on initialization, see Section 3,
"Communicating with CaMS through Direct Windows." For more information on the
restart data set, see Section 6, "Interactive Recovery."

Following is the program flow for the initialization step of the batch recovery program:

* INITIALIZE COMS *

OPEN FI LE
OPEN UPDATE DATABASE

ON EXCEPTION
STOP RUN;

ESTABLISH COMS LINK;
ENABLE INPUT COMS IIBATCH";
RECEIVE COIN INTO MSG

NO DATA RESET FOUND RECOVERY MESSAGE - -
ELSE

SET MY_BATCH_RESTARTED;
SET FOUND_RECOVERY_MESSAGE;

IF NOT FOUND_RECOVERY_MESSAGE
SELECT RSTQD FROM RSTINFO

WHERE RST-PROG-DESG = MY-PROG-DESG;
RETRIEVE RSTQD

ON EXCEPTION
MOVE 1 TO WS-RETRIEVE-FIELD;

IF RSTINFO-NOT-RETRIEVED
INSERT RSTINFO

ASSIGN WS-PROG-NAME
ASSIGN MY-PROG-DESG
ASSIGN MY-RESTARTINFO

REPOSITION FILE
IF RSTINFO-RETRIEVED

SET MY_BATCH_RESTART;
IF FOUND_RECOVERY_MESSAGE THEN

DO_INITIAL_BATCH_RECOVERY;

TO RST-PROG-NAME
TO RST-PROG-DESG
TO RST-INFO;

Initializing Interactive Mode

7-14

Interactive mode allows a program to receive nonrecovery transactions, and to be
signaled when to go to end of job (EOJ). It deletes an eventual batch mode restart class
entity.

8600 0650-000

Batch Recovery

Following is the program flow for initializing the interactive mode in the batch recovery
program:

* INITIALIZE ONLINE MODE * - -

BEGIN-TRANSACTION;
DELETE RSTINFO

WHERE RST-PROG-DESG = MY-PROG-OESG;
ENABLE INPUT COIN II ONLINE" ;
MOVE COIN.PROGRAMDESG TO MY-PROG-DESG;
END-TRANSACTION;

Initializing Batch Mode

Initializing batch mode allows your program to receive only recovery transactions. This
program subroutine also informs CaMS of the switch from interactive to batch mode.
Following is the program flow for initializing batch mode within your batch recovery
program:

* INITIALIZE BATCH MODE * - -

ENABLE INPUT CDIN "BATCH";
MOVE CDIN.PROGRAMDESG TO MY-PROG-DESG;

Initial Batch Recovery

You can use the batch recovery subroutine to allow your program to participate in
the CaMS recovery and archival recovery when it receives a recovery transaction in
INITIALIZE_CaMS. This subroutine receives recovery transactions and updates a
database.

Following is the program flow for doing initial batch recovery within the batch recovery
program:

* DO_INITIAL_BATCH_RECOVERY *

RESET NO_MORE_RECOVERY
WHILE NOT NO_MORE_RECOVERY DO

HANDLE_RECOVERY_TRANSACTION;
RECEIVE COIN INTO MSG

8600 0650-000

NO DATA
SET NO_MORE_RECOVERY;

REPOSITION FILE;

7-15

Batch Recovery

Error Recovery

Use this subroutine when an error is returned from either BEGIN-TRANSACTION or
END-TRANSACTION statements. The error indicates that the transaction has not
been committed to the database. COMS submits this transaction to the program by
way of the RECEIVE statement. The subroutine receives the recovery transaction and
updates the database.

Following is the program flow for handling begin- and end-transaction errors within the
batch recovery program:

* DO BTR ETR ERROR RECOVERY * - - - -

RESET NO MORE RECOVERY
RECEIVE COIN INTO MSG

NO DATA
SET NO_MORE_RECOVERY

ELSE
HANDLE RECOVERY TRANSACTION - -

Handling the Recovery Transaction

Following is the subroutine for handling the recovery transaction within the batch
recovery program:

* HANDLE_RECOVERY_TRANSACTION *

SIMULATE_ORIGINAL_TRANSACTION;
MOVE MY_RESTARTINFO TO CDIN.CONVERSATION.RESTARTINFO;
BEGIN-TRANSACTION COIN USING MSG;
UPDATE_DATABASE;
MODIFY RSTINFO

ASSIGN MY-RESTARTINFO TO RST-INFO
WHERE RST-PROG-DESG = MY-PROG-DESG;

END-TRANSACTION CDOUT;

Batch Processing

7-16

Use the batch processing subroutine to update a da~base until the processing is done.
This subroutine stores restart information necessary to identify where to continue for
recovery. This is done both in the transaction trail (using the Conversation Area field of
the input header) and in· the restart class.

8600 0650-000

Batch Recovery

Following is the program flow for batch processing within the batch recovery program:

* DO_BATCH_PROCESSING *

DO

MOVE MY_RESTARTINFO TO CDIN.CONVERSATION.RESTARTINFO;
BEGIN-TRANSACTION COIN USING MSG;
UPDATE_DATABASE;
MODI FY RSTINFO

ASSIGN MY-RESTARTINFO TO RST -INFO
WHERE RST-PROG-DESG = WS-PROG-DESG;

END-TRANSACTION CDOUT;
UNTIL ALL_WORK_DONE;

Transaction State

Batch application programs must use a BEGIN-TRANSACTION statement that
identifies the message variable for entering transaction state. Moreover, the message
variable must contain an image of the batch transaction read from the disk file or tape
file.

These requirements are necessary to allow CaMS to capture an image of the transaction
on the transaction trail. Then, if the database is ever rolled back, CaMS can resubmit
the transaction to the batch application in coordination with the resubmission of the
online transactions. Another benefit is that the batch file that contained all the original
input transactions does not need to be present during archival recovery.

Following is the program flow for transaction state processing within the batch recovery
program:

* BEGIN TRANSACTION TIME *

BEGIN-TRANSACTION COIN USING MSG
ON EXCEPTION

DO_BTR_ETR_ERROR_RECOVERY;

* END TRANSACTION TIME *

END-TRANSACTION CDOUT AUDIT RDS
ON EXCEPTION

DO_BTR_ETR_ERROR_RECOVERY;

8600 0650-000 7-17

7-18 8600 0650-000

Section 8
Security

COMS automatically performs security checks, provided that a message-routing
and security scheme has been defined with the COMS Utility program and stored
in the configuration file. For more information on COMS security, see the COMS
Configuration Guide.

This section provides information on the security-checking routines that you can write
into application programs and processing items to augment COMS security or to function
independently. This type of security checking is called programmatic security. You can
also use security category designators and usercode designators in appHcation programs
and processing items to assist in performing secUrity checks on a more refined level than
COMS can do alone.

To use security categories and other security-related COMS entities for programmatic
security, you must have declared an input header and an output header in your program.
You also need to use COMS service functions when writing routines for programmatic
security. Refer to Section 3, "Communicating with COMS through Direct Windows,"
for additional information about the input and output headers. Refer to Section 4,
"Accessing Service Functions," for information about the service functions.

When to Use Programmatic Security
Although COMS provides highly effective and flexible tools for configuring a COMS
security scheme, some degree of programmatic security is an alternative to consider
under the following circumstances:

• You want to perform more refined security checking than COMS security alone can
provide.

• You are not using trancodes for message routing or security checking.

• You are using trancodes for message routing, but you have not assigned security
categories to . the trancodes you are using.

• You are using trancodes to which security categories have been assigned, but you
want to perform an additional security check after the program retrieves a record
from the database.

• You want to provide data-dependent security.

Using the Input Header in Security Checking
The input header is a message header that provides routing and other descriptive
information about received messages. When you use an input header in a program that
runs under COMS, COMS places values into the fields of the input header each time the
program receives a message.

86000650--000 8-1

Security

The following list, which provides the types of information that COMS places in the input
header fields, can be used in security checking:

• The usercode associated with the message

• The security categories associated with the session that originated the message

• The module function index (MFI) representing the trancode associated with the
message

• The time and date when the message was first encountered by COMS

• The station or program that originated the message

The following paragraphs describe specific techniques you can use for security checking
/in programs that contain an input header. Since most values that COMS places into
the input header fields are designators, you have to call service functions of the COMS
library to exchange the designators for names. Refer to Section 4, "Accessing Service
Functions," for more information about the service functions. Refer to Section 3,
"Communicating with COMS through Direct Windows," for more information about the
input header.

Using the Usercode Designator

When a program receives a message, the U sercode field of the input header contains a
designator representing the usercode associated with the incoming message. You can
call the GET_NAME_USING_DESIGNATOR service function to exchange the usercode
designator for a usercode name.

A program can perform a security test by checking the usercode associated with a
particular message against a list of usercodes kept in the program. This type of security
test is not the most efficient kind of programmatic security you can use, but it could be
useful if you are not using trancodes or security categories.

Using the Security Designator

When a program receives a message, the Security Designator field of the input header
contains the security designator for the session, which represents the intersection of
the security-category lists assigned to the usercode and the station that originated the
incoming message.

If a security-category list is assigned to your program, COMS provides a way to
find out whether any security category in the list of the program intersects with
the security-category list of your session. You simply have the program call the
TEST_DESIGNATORS service function to test the validity of the security category.

Using the Module Function Index

8-2

If a process-security error occurs, the Function Status field of the input header contains
a value to indicate the error condition. For the meaning of this and other values and
mnemonics, see Appendix'A

8600 0650-000

Security

If you have associated positive MFIs with your trancodes or group of trancodes and have
not associated security categories with those trancodes, you can use the MFls to point
to the appropriate code that determines whether the user who entered the message
is allowed to submit this kind of trancode. Refer to "Using Module Function Indexes
with Input" in Section 3, "Communicating with CaMS through Direct Windows," for
information about MFIs. Using the usercode designator and/or the session-security
designator are other possible methods for checking user validity.

Checking Database Records After Retrieval
This technique can be combined with other prograrrunatic security techniques to produce
a more refined security check than is possible with CaMS security alone. The technique
involves the program actually retrieving a database record before making the final
decision as to whether a certain security-category list entitles the user to see or update
the particular database record. Following are two examples of how to use this technique.

Example 1

At the ABC Company, a particular trancode has been defined to identify a transaction
as an inquiry into the personnel database. Employees who work in the Shipping and
Receiving Department obviously should not be permitted to make inquiries about
personnel records. So the trancode representing the personnel inquiry transaction is not
assigned to the window that Shipping and Receiving employees use to communicate with
CaMS.

However, a clerk who works in the Personnel Department is permitted to inquire about
personnel records, except for his own personnel record and the personnel records of
upper management. The inquiry transaction always works the same way, except that
each personnel record belongs to a different person. Because the program does not
know until the inquiry has been made who the record belongs to, the program must
perform a security test of record names to determine whether the record is one of the
few records that the personnel clerk is not allowed to see.

8600 0650-000 8-3

Security

8-4

Example 2

Following is an example of making a more refined decision by using programmatic
security checking.

At the XYZ Company, suppose that security categories have been defined for the
following employee levels:

• Senior manager

• Junior manager

• Clerk

Suppose that the Payroll Department has a rule that permits senior managers to access
only their own payroll records and those belonging to junior managers, while permitting
junior managers to access their own payroll records and the payroll records of everyone
else except for senior managers. Payroll clerks are permitted to see only their own
payroll records and those belonging to other payroll clerks.

The security requirements of this situation are too complicated for COMS to handle
alone. Whenever a payroll transaction is entered, authority of the user to see a payroll
record of a senior manager, junior manager, or clerk depends on the identity of a
particular record in the data base. Therefore, the program needs to do a more refined
security check.

First, the program could find the record on the database and determine what kind of
employee it belongs to. Next, the program could find out, through a programmatic
convention, whether the security category associated with the record is in the
security-category list for the session that originated the transaction. To do this, the
program would call the TEST_DESIGNATORS service function. At this point, the
program is ready to decide whether the transaction is valid for this record.

If the company hires a new manager, he or she just needs to be given his or her own
usercode with the appropriate security categories assigned to it. The security-checking
routines in the program need not be adjusted, nor the program recompiled.

When the destination is a station, the message is a program-to-station message. COMS
security permits a program to send a processed message back to the originating station.
Alternatively, a program can send a message to any station or window dialogue within
the window of the program. In addition, a program can send a message to a printer,
which is known to COMS as a single-output window and defined with the Network
Definition Language IT (NDLm as MYUSE = OUTPUT.

When the destination for a processed message is another transaction-processing
program, the message is a program-to-program message. COMS security permits
a program to send a message to another program only when the security category
belonging to the trancode in the message is in the security-category list assigned to
the destination program. Refer to "Routing Messages by Specifying a Destination"
in Section 3, "Communicating with COMS through Direct Windows," for additional
information.

86000650-000

Security

Thus, the primary purpose of COMS process security is to prevent programs from
processing transactions submitted by users or programs who are unable to obtain the
security clearance required by COMS.

How COMS Handles Security Errors
When a user fails access security and cannot log on to a particular station or window, the
Menu-Assisted Resource Control (MARC) program sends an error message to the user.
Refer to the MARC Operations Guide for a list of error messages that can be received in
regard to access security.

When a message fails process security, the failure occurs because the security-category
list of the user or program submitting the message does not include the security category
associated with the trancode in the message. Under these circumstances, COMS assigns
the failed message to the default agenda for the window.

Like all agendas, the default agenda must specify a program as a destination for
messages, and can specify a list of processing items. The existence of a default agenda
must be defined with the COMS Utility program and stored in the configuration file. You
must write a destination program containing an input header and an output header if
you want COMS to identify a security error and report it in the Function Status field of
the input header of your program.

The program you write to handle security errors does not have to be written solely for
error-handling. It can be an ordinary application program that is capable of processing
various transactions associated with valid MFls as well as handling security errors.

8600 0650-000 8-5

8-6 8600 0650-000

Section 9
Communicating with COMS through
Remote-File Windows

As an alternative to using direct windows to access a station or program in COMS, you
might want to use remote-file windows for the following reasons:

• You have existing programs that use the remote-file interface, either from the
Generalized Message Control System (GEMCOS), the Command and Edit (CANDE)
MCS, another U nisys software product, or user-written applications.

• You want to create a time-sharing type of application. You want to ensure that if
multiple copies of a program are running, only one copy of that program will receive
input from any particular user.

With remote files, each program is associated with a set of users. Messages entered in a
current window are sent to the program associated with that window. This differs from
use of direct windows, in which multiple copies of a program read from a common queue.
In remote files, every message from a station is processed by the same copy of a program.
In direct windows, the current message from a station might be processed by one copy of
a program, while another message from that same station might be processed by another
copy of the program.

For further information on remote files and file attributes, see the A Series I/O
Subsystem Programming Guide. For further information on task attributes, see
the A Series Work Flow Administration and Programming Guide. For additional
information about remote files in COMS, connected with a comparison between COMS
and CANDE, see the COMS Migration Guide.

There are two kinds of remote-file windows: dynamic and declared. The following two
parts of this section tell you how to use each kind of remote-file window.

Dynamic Remote-File Windows
You can use dynamic remote-file windows to open to program environments that are not
defined to COMS.

For example, when you are in a Menu-Assisted Resource Control (MARC) window
session, you might want to run a remote-file program. MARC initiates the program and
sets the STATION task attribute to the name of the station you are currently using.
Since this task attribute is set, COMS is called to handle the opening of the remote file.
When your program executes a statement to open a remote file, COMS approves the
opening of the file and associates a dynamic window with it. MARC requests COMS
to change the current window from a MARC window to the just-opened dynamic
remote-file window, which might be identified as REMOOOl.

86000650-000 9-1

Communicating with COMS through Remote-File Windows

When you close the remote-file window, your current window is changed to the MARC
window dialogue you were in before you opened the remote-file window. It is important
to be aware of what your current program environment is, particularly if you move
among several windows without closing them.

Dynamic remote-file windows can also be created when a remote-file program initiates a
connection to a station on its own. The remote-file program initiates this connection in
its remote file by adding the station to the remote-file station list. When the remote-file
program requests a station that is connected to CaMS, caMS opens a dynamic window
for the station. You are not notified directly that the window has been opened, but
you can use the CaMS ?WINDOWS command to verify that it has. Then, you can use
the COMS ?ON command (as in ?ON REM002) to change the current window to the
remote-file window.

One dynamic remote-file window is established per user. If the user at station one
submits a ?WINDOWS command, he or she might receive the message that the dynamic
window that has been opened is REMOOOl. If another user submits the window
command, he or she receives a message that a different dynamic window, such as
REM0005, has been opened, and yet these users might both be accessing the same
remote-file program through the same remote file.

Declared Remote-File Windows
You can use declared remote-file windows to create either single-user or multiuser
environments within COMS. To declare a remote-file window, you need to run the
CaMS Utility. In the COMS Utility, you name your remote-file program and can set
various options, such as number of users per program copy or number of copies of the
program allowed. For more information on using the COMS Utility, see the COMS
Configuration Guide.

The relative station numbers (RSN s) associated with remote files become particularly
important with declared remote-file windows. An RSN is associated with each station
in a remote file, depending on the number. of program copies and users per copy you
have set in the COMS Utility. When you close a window, COMS causes the remote-file
program to receive an end-of-file (EOF) indication. Your program should check the
LASTSTATION file attribute to determine on which RSN the EOF was given. If
LASTSTATION is RSN 1, you should go. to end of job (EOJ). If you receive any other
RSN number, thiS means that the station associated with that RSN has closed its
connection to the remote-file program; you might want to clean up local storage.

Single-User Declared Windows

9-2

Within COMS, when you move to a window using the COMS ?ON command for
single-user remote-file declared windows, COMS starts the remote-file program and sets
the task attribute USERCODE. On the Program Activity menu of the COMS Utility,
you can specify a usercode under which you would like your programs to run. If you
do not do this,· COMS assigns the usercode with which you logged on to COMS to the
remote-file program it starts when you submit the ?ON RMT command.

8600 0650-000

Communicating with COMS through Remote-File Windows

In a single-user declared remote-file window, each copy of a program is dedicated to
one station. If another station tries to access the remote-file window, COMS starts a
separate copy of it for that user. When no usercode is set in the Program Activity menu .
of the COMS Utility, COMS assigns to that copy the usercode currently logged on at the
station.

Each remote-file window in a single-user environment has only one RSN assigned to
it. If you decide to close this type o{window, COMS causes an EOF indication to send
the program to EOJ. Also, if COMS wants your program to go away for any reason, the
program receives an EOF.

Multiuser Declared Windows

If you want to have multiuser declared windows, set the number of users to more than
one in the Program Activity menu of the COMS Utility. Within COMS, when you submit
the command ?ON RMT, COMS starts the remote-file program and sets the STATION
task attribute to a special COMS station.

If in the COMS Utility you have set the number of users to two, COMS is able to assign
two users to each copy of the remote-file program. The following example shows how
COMS would route three users who want to access the same remote-file program.

Remote files have RSN s associated with them. RSN 1 for a remote file is reserved by
COMS for its own record-keeping purposes. The second and third RSNs for the remote
file designate the stations that can be attached to this remote file, since the number of
users has been set to two. If a third user tries to access the remote-file program, COMS
initiates another copy of the program and uses RSN 1 for its own record keeping. Then,
RSN 2 designates the station of the third user.

If the first user decides to close his or her window, COMS causes the remote-file program
to receive an EOF indication. This indicates that the program of the user needs to check
the LASTSTATION file attribute to determine on which RSN the EOF was given. In
this case, the second user is still attached to the remote file through RSN 3. Therefore, .
the program might clean up the local storage for RSN 2, but the program. should not
terminate because there is still a user attached to it. When the second user closes,
the program receives an EOF indication for RSN 3, and the program might clean up
the storage for RSN 3. Because this is the last station associated with this copy of the
program, COMS sends an EOF indication on RSN 1 to indicate that the program should
go to EOJ. This EOF indication is sent even though there is a user attached to another
copy of the remote-file program (the third user, represented by RSN 2 in the second copy
of the remote-file program).

Additional Programming Notes for Remote-File
Windows

When communicating with COMS through remote-file windows, be sure to observe the
precautions and limitations described in this section.

8600 0650-000 9-3

Communicating with COMS through Remote-File Windows

Designation of Input or Output Files

When you use remote-file windows, the usual kind of file you will be opening is an
input/outputfile. However, you might want your program to open files that are input
only or output only. In CaMS, as in CANDE, you can open several output files.
In declared remote-file programs, all output files are associated with the declared
remote-file window established in the CaMS Utility. You should declare only one
input-capable file, and that should be associated with the established declared remote-file
window.

In dynamic remote-file programs, all output files are associated with the same dynamic
window and the first input-capable remote file is also associated with this window. All
subsequent input-capable files are assigned different dynamic windows.

Tanking and Multiuser Remote-File Windows

If you are writing a program for a multiuser remote-file window, you should set the
TANKING file attribute to SYNC or ASYNCH. When you use either of these values,
the output for the remote file is tanked, and the remote file program continues after
the remote file closes. The default value for TANKING is NONE. Be aware that if this
attribute is set to NONE, a user whose terminal is on local or on another window can
prevent all other users of this window from receiving output. If the attribute is set to
NONE and the TThfELIMIT file attribute is used, COMS gives a timelimit exception
when the number of outstanding characters for a station exceeds 2400 characters. This
range of characters includes data comm headers.

Remote-file programs written to run under COMS must not write to the file until the
processing of the OPEN statement is completed. To make sure that this happens,
always wait until an input is received for a read operation. If necessary, use notification
text to provide this input on a declared remote-file window.

Exception Handling

9-4

When you are writing remote-file programs for use in the COMS environment, use
exception handling for read and write operations. Your program should always check
both read and write operations for the presence ofEOF exceptions. When an EOF
exception is found, the program should check its LASTSTATION file attribute to find
out what to do. .

COMS gives a time limit exception if TANKING is set to NONE and a TIMELIMIT
attribute is used when the number of outstanding characters for a station exceeds the
maximum limit for the specified time limit. If a broadcast operation is done, COMS gives
a time limit exception if output could not be sent to any of the stations in the remote file.

If the attribute is set to NONE and the file attribute TIMELIMIT is used, COMS
suspends output to the file when the number of outstanding characters for a station
exceeds the limit of 2,400 characters, including data comm headers. When the time
limit expires, COMS gives a time limit exception to the program attempting the write
operation.

8600 0650-000'

Appendix A
Tables of Values and Mnemonics

The following tables contain the values and mnemonics your program looks for
in response to the execution of various program statements. The tables give
quick-reference information for the Function Status and Status Value fields of the input
header, the Status Value field of the output header, result messages for service function
calls, and service function security category values and mnemonics.

8600 0650-000 A-I

Tables of Values and Mnemonics

Input Header Function Status Field Values and
Mnemonics

A-2

Different syntax is used to access mnemonics in different languages. RPG uses the
mnemonic as a figurative constant, which is the name preceded by an asterisk (*). In
Pascal, mnemonics are context-sensitive identifiers.

Function Status fields passed to MARC also contain additional information in bits
[38: 19]. Therefore, any processing items to be placed in the MARCINPUT agenda
should handle messages with nonzero values in this field. The values within this field are
to be used solely for communication between COMS and MARC, and they might change
on any release without notification.

Table A-I shows the values and mnemonics of the input header Function Status field.

Table A-I. Input Header Function Status Field Values and Mnemonics

COBOl/ALGOL Pascal
Value RPG Mnemonic Mnemonic Description

0 NULFNCTN NULLFNINDX The field value is zero.

-01 CTLMSG CTLMSG MARC message.

-02 NOWNDW NOWNDW No window is available.

-03 LOST LOST No destination is available to
receive messages.

-04 BADTCODE BADTCODE The message has been routed to
the default agenda because one of
the following two conditions has
occurred:

• COMS has detected an
alphanumeric trancode that
has not been defined to
COMS.

• COMS has detected a
trancode beginning with an
alphanumeric character
followed by a special
character or characters.

-05 NOTCODE NOTCODE A trancode beginning with a
nonalphanumeric character has
been found. The message will be
routed according to the default
agenda.

continued

8600 0650-000

Tables of Values and Mnemonics

Table A-I. Input Header Function Status Field Values and Mnemonics (cont.)

COBOl/ALGOL Pascal
Value RPG Mnemonic Mnemonic Description

-06 CTLNOWDW CTLNOWDW A controlled message is pending
without an available window.

-07 CTLTOMCS CTLTOMCS A controlled message ha~ been
sent to the MCS.

-08 ON MARC ON MARC The MARC window is now
available.

-09 SECTYERR SECERR A process-security error has
occurred because the trancode
associated with the incoming
message is not allowed for this
station or session.

-10 NOITEM NOITEM An attempt was made to apply a
processing-item list to a message,
but an item of the list was not
found. As.a result, the message is
sent to the default agenda.

-11 TRDIVRT TRDIVRT A message has been diverted from
a dialogue that is in transaction
mode.

-12 GOODDEL GOODDELVY Delivery of the message is
confirmed.

-13 BRK BRK A break condition has caused
output from a direct window to be
discarded.

-14 BADDELVY BADDELVY For a CP 2000 station, rejection of
a message for which delivery
confirmation was requested.

-15 BAD DATA BAD DATA For a CP 2000 station, rejection of
a message for which delivery
confirmation was not requested.

continued

8600 0650-000 A-3

Tables of Values and Mnemonics

Table A-I. Input Header Function Status Field Values and Mnemonics (cont.)

COBOL/ALGOL Pascal
Value RPG Mnemonic Mnemonic Description

-16 OPNOTEXT OPENNOTEXT When you define a direct window
in the COMS Utility and do not
add open-notification text, COMS
returns this value upon each
request for an open.

-17 ON NOTEXT ON NOTEXT When you define a direct window
in the COMS Utility and do not
add on-notification text, COMS
returns this value upon each
request for an on.

-18 BADTPDEL BADTPDELVY Delivery confirmation has been
requested for a TP-to-TP message.
This value notifies the sending
program that the message has not
been delivered .

. -21 CTLRMSG CTLRMSG Control message.

-22 OUTMSG OUTMSG Output message.

-23 RTNMSG RTNMSG Return message.

-24 RMTFILE RMTFILE Remote file activity.

-25 CLOSMARC CLOSMARC Close MARC window.

-26 STSECMSG STARTS ECMSG Start security message.

-27 NOSECMSG STOPSECMSG Stop security message.

-30 PREVATT ALREADYATT Successful attachment; station
was already attached.

-31 TERMATT ATTACHED Successful attachment; station
was attached through an enable
statement.

continued

A-4 8600 0650-000

Tables of Values and Mnemonics

Table A-I. Input Header Function Status Field Values and Mnemonics (cont.)

COBOl/ALGOL Pascal
Value RPG Mnemonic Mnemonic Description

-32 WAITBUSY WAITNOTBUSY Attachment pending; waiting for
station to become not busy.

-33 WAITATI WAITATI Attachment pending; waiting for
physical attachment

-34 DIALOK DIALOUTOK The requested dial-out over a
modem was completed.

-35 ATIPEND PENDINGATI An attachment request was
offered; waiting for a match from
the other host

-39 NOHOST NOHOST COMS made attachment offer;
other host not available. COMS
cancels pending attach.

-40 PROTERR PROTOCOLERR Failure during request to attach;
protocol error.

-41 NORSRCS NORESOURCES Failure during request to attach; no
resources available.

-42 NOTDEF NOTDEFINED Failure during request to attach;
station not defined.

-43 INUSE INUSE Failure during request to attach;
station in use.

-44 NOTATI NOTATT Failure during request to attach;,
station not physically attached.

-45 BADCALL CALLFAILED Failure during request to attach;
the BNA ESTABLISH CALL
command failed.

-46 NOTAVAIL NOTAVAIL Failure during request to attach;
station not available.

continued

8600 0650-000 A-5

Tables of Values and Mnemonics

Table A-I. Input Header Function Status Field Values and Mnemonics (cont.)

COBOL/ALGOL Pascal
Value RPG Mnemonic Mnemonic Description

-47 BADDIALI BADDIALINIT COMS was unable to initiate the
requested dial-out.

-48 DIALINC DIALINCOMPLETE COMS was unable to complete the
requested dial-out.

-50 NOREQ NOREQUEST Successful detachment; the
window was closed.

-51 RETAINED RETAINED Successful logical detachment; the
CP 2000 terminal gateway
retained the physical attachment.

-52 NORTAIND NOTRETAINED Successful logical and physical
detachment from a CP 2000
station.

-53 DIALDISC DIALDISCONNECT Successful detachment from an
NSP station that had been
attached through a modem.

-60 SHUTDOWN SHUTDOWN Program is asked to terminate
because COMS is shutting down.

-61 DISABLED DISABLED Program is asked to terminate
because a DISABLE entity
command was entered. The entity
is the COMS entity (for example,
DISABLE <entity type>
< entity name>) that caused
program termination. This entity
could also be a program, a
window, or a database.

-62 TOOMANY TOOMANY Program is asked to terminate
because activity was reduced and
current cdpies exceeded minimum
copies.

continued

A-6 8600 0650-000

Tables of Values and Mnemonics

Table A-I. Input Header Function Status Field Values and Mnemonics (cant.)

COBOLjALGOL
Value RPG Mnemonic

-100 (not applicable)

8600 0650-000

Pascal
Mnemonic

(not ~pplicable)

Description

An invalid input message key was
detected by the SDF formlibrary.
An input error has occurred, and
the application program should
perform error handling. Typically,
this error indicator is received on
the first input when SDF is used.
SDF takes no action on the input
message.

A-7

Tables of Values and Mnemonics

,Input Header Status Value Field Values and
Mnemonics

A-8

Different syntax is used to access mnemonics in different languages. RPG uses the
mnemonic as a figurative constant, which is the name preceded by an asterisk (*). In
'Pascal, the mnemonics are context-sensitive identifiers.

Table A-2 shows the input header Status field values and mnemonics.

Table A-2. Input Header Status Field Values and Mnemonics

COBOl/ALGOL
Value

o

20

80

89

90

91

92

PascaVRPG
Mnemonic

COMSOK

NORQST

SKIPNEXT

BADMSGSZ

BADTR

NODATA

OKRECOV

Description

Successful incoming message.

The station designated for a dynamic
attachment or detachment is invalid or
unknown, the specified hostname does
not match"or the host system has denied
access to the station.

A batch synchronized recovery transaction
has aborted outside of the transaction
state. The program should skip the
returned successful message, skip the next
failed message, and then continue.

The input message has been truncated
because it was larger than the input
message area provided in the RECEIVE
statement.

A batch synchronized recovery transaction
has aborted after mid-transaction. The
transaction caused the program to abort
and must not be reprocessed.

There is no message to be received by
your program.

Successful incoming message is being
resubmitted for synchronized recovery.

continued

8600 0650-000

Tables of Values and Mnemonics

Table A-2. Input Header Status Field Values and Mnemonics (cont.)

COBOl/ALGOL
Value

93

94

95

97

99

100

101.

8600 0650-000

PascaVRPG
Mnemonic

BADPREV

BADDEST

. BADAGND

NODEST

GOEOT

DIALING

BADDIAL

Description

Successful incoming message was
submitted once and caused the program
to abort, so is being resubmitted again. If
the message causes another abort, the
originating station will be notified and the
message discarded.

A processing item has attempted to
reroute an input message and one of the
following conditions has occurred.

• An invalid program designator was
detected while a processing item
attempted to route a message from
one application program to another.

• An invalid station designator was
detected while a processing item
attempted to send a message.

An invalid agenda designator was detected
while a processing item was attempting to
reroute an input message.

The destination program of an application
program message was not enabled while a
processing item was attempting to reroute
an input message.

COMS has directed the application
program to terminate. The Function
Status field of the input header will show
one of three values (-60, -61, -62) or
corresponding mnemonics, depending on
the reason for the termination.

The destination station for an attempted
dynamic attachment is already attached
to another program.

An attempted dial-out over a modem
failed.

continued

A-9

Tables of Values and Mnemonics

Table A-2. Input Header Status Field Values and Mnemonics (cont.)

A-IO

COBOL/ALGOL
Value

102

103

PascaVRPG
Mnemonic

BADDCNCT

BADENBLE

Description

An attempted dynamic attachment from a
dial-out station failed.

An attempt to add a window to a window
list of a station list failed.

8600 0650-000

Tables of Values and Mnemonics

Output Header Status Value Field Values and
Mnemonics

Different syntax is used to access mnemonics in different languages. RPG uses the
mnemonic as a figurative constant, which is the name preceded by an asterisk (*). In
Pascal, the mnemonics are context-sensitive identifiers.

Table A-3 shows the output header Status Value field values and mnemonics.

Table A-3. Output Header Status Value Field Values and Mnemonics

COBOl/ALGOL
Value

o

86

87

88

89

92

94

86000650-000

PascaVRPG
Mnemonic

COMSOK

POI NVDST

POETR

POTOTP

SADMSGSZ

OKRECOV

SADDEST

Description

The outgoing message has been accepted
for transmission.

The specified TP destination for the
protected output message is invalid; this
TP is associated with a window that is
either not protected or is protected by a
different protected output file. Used only
by applications generated by L1NC
Release 14.

A successful transaction commit has been
reached; therefore, no further protected
output is allowed for this transaction.
Used only by applications generated by
L1NC Release 14.

A protected TP-to-TP message has already
been generated; only one such message is
allowed for each protected transaction.
Used only by applications generated by
L1NC Release 14.

The length of the output message
specified in the Text Length field of the
output header was larger than the output
message area.

The outgoing message has been accepted,
but will be discarded because COMS is
processing a recovery transaction.

One of the following two conditions has
occurred:

continued

A-II

Tables of Values and Mnemonics

Table A-3. Output Header Status Value Field Values and Mnemonics (cont.)

A-12

COBOL/ALGOL
Value

95

96

97

PascaVRPG
Mnemonic

BADAGND

AGNDQUIT

NODEST

Description

• The outgoing message was rejected
because the station designator for the
destination was invalid.

• An invalid program designator was
detected while a processing item
attem pted to route a message from
one application program to another.

The outgoi ng message was rejected
because the agenda designator in the
Agenda DeSignator field of the output
header was invalid.

The outgoing message was prematurely
stopped by a processing item. This error
number is intended to be used as an error
signal from the processing item to the
calling program.

One of the following conditions has
occurred:

• The outgoing message was rejected
because the station is not open to
this window.

• The destination program of an
application program message is not
enabled.

• The destination program and its
associated database are disabled.

• The outgoing message was rejected
because it contained an invalid
trancode and no default output
agenda was specified.

continued

8600 0650-000

Tables of Values and Mnemonics

Table A-3. Output Header Status Value Field Values and Mnemonics (cont.)

COBOl/ALGOL
Value

98

104

105

109

110

8600 0650-000

Pascal/RPG
Mnemonic

STOPPROC

MSGTOOBG

DBDSBLED

Description

One of the following conditions has
occurred:

• A security error was detected when a
program routed a request from one
application program to anothe~
progra m specified by the tra nsaction
code in the message.

• A processing item in the
processing-item list associated with
the requested agenda was not
available. CaMS stopped processing
the processing-item list when the
unavailable processing item was
encou ntered.

The outgoing message was rejected
because it was too large to be processed.

The data base associated with the
destination program is disabled.

The window and database of the
destination program are disabled.

The connection establishment process is
still in progress because of a prior
ENABLE TERMINAL request. The
outgoing message has been rejected.

A-13

Tables of Values and Mnemonics

Service Function Result Values and Mnemonics

A-14

Table A-4 shows the service function result value integers for ALGOL, COBOL, and
RPG, the service function result value mnemonics for Pascal, and a description of what
occurs when these integers or mnemonics are executed.

Table A-4. Service Function Result Values and Mnemonics

COBOLIALGO~
Value

o

1

2

3

4

Pascal/RPG
Mnemonic

OK

FUNCFAIL

INVDESG

SHORTARRAY

NOINSTDATA

Description

Function completed successfully.

Error. Function failed because of invalid
name or designator.

Designator error. Invalid designator.

Array size error. Supplied array was too
short to house the information.

No-data error. The requested installation
data was not present in the configuration
file.

8600 0650-000

Tables of Values and Mnemonics

Service Function Security Category Values and
Mnemonics

Different syntax is used to access service function security category values and
mnemonics in different languages. RPG encloses the mnemonic in single quotation
marks (alpha literal). In Pascal, the mnemonics are context-sensitive identifiers.

Table A-5 shows the service function security category values or mnemonics for ALGOL,
Pascal and RPG, and COBOL74 in colunms 1, 2, and 3, respectively.

Table A-5. Service Function Security Category Values and Mnemonics

ALGOL
Value PascaVRPG Mnemonic COBOL74 Name

1 STATION STATION

2 USERCODE USERCODE

3 AGENDA AGENDA

4 PROGRAM PROGRAM

5 SECURITY SECURITY

8 SECTYCAT SECURITY-CATEGORY

9 DEVICE DEVICE

10 STNLlST STATION-LIST

11 DVCLlST DEVICE-LIST

12 WINDOW WINDOW

13 DATABASE DATABASE

14 PROCITEM PROCESSING-ITEM

15 PRITMLST PROCESSING-ITEM-LiST

16 TRANCODE TRANCODE

17 WNDWLST WINDOW-LIST

18 LIBRARY LIBRARY

19 CATLIST CATEGORY-LIST

20 I NSTDATA INSTALLATION-DATA

41 INSTINTI INSTALLATION-INTEG ER-l

42 INSTINT2 INSTALLATION-I NTEG ER-2

43 I NSTINT3 INSTALLATION-INTEGER-3

44 I NSTINT4 INSTALLATION-INTEG ER-4

45 I NSTINTS INSTALLATION-INTEGER-ALL

46 I NSTSTRI INSTALLATION-STRING-l

continued

8600 0650-000 A-15

Tables of Values and Mnemonics

Table A-S. Service Function Security Category Values and Mnemonics (cont.)

ALGOL
Value PascaVRPG Mnemonic COBOL74 Name

47 I NSTSTR2 INSTALLATION .. STRING-2

48 I NSTSTR3 INSTALLATION-STRING-3

49 I NSTSTR4 INSTALLATION-STRING-4

50 INSTHEX1 INSTALLATION-HEX-1

51 INSTHEX2 I NSTALLATION-H EX-2

52 INSTLINK I NSTALLATION-DATA-LI N K

61 QDEPTH QUEUE-DEPTH

62 MSGCOUNT MESSAGE-COUNT

63 LASTRESP LAST-RESPONSE

64 AGGRRESP AGGREGATE-RESPONSE

65 STATS STATISTICS

71 DATE DATE

72 TIME TIME

81 MAXUSRCT MAXI MUM-USER .. COU NT

82 CURUSRCT CURREN~USE~COUNT

83 LSN LSN

84 MIXNMBRS MIXNUMBERS

85 VIRTTERM VIRTUAL TERMINAL

86 SCREENSZ SCREENSZ

95 LANGUAGE LANGUAGE

120 CONVEN CONVENTION

A-16 8600 0650-000

Appendix B
COMS Header Layout

Defining Input Header Information
Table B-llists the words, the COMS field names, and the Language field names
associated with standard COMS input header layout.

Table B-1. Input Header Information

Word COMS Field Name Language Field Name

o Program Designator PROG RAM DESG

3.6 COBOL74 CD: SYMBOLIC QUEUE

1 Function Index FUNCTIONINOEX

3.6 COBOL74 CD: SYMBOLIC SUB-QUEUE-1

Function Status FUNCTIONSTATUS

2 Usercode Designator USERCOOE

3.6 COBOL74 CD: SYMBOLIC SUB-QUEUE-2

3 Security Designator SECURITYDESG

3.6 COBOL74 CD: SYMBOLIC SUB-QUEUE-3

4 (FIELDS) FIELDS

43:16 (not used)

31:02 (reserved)

29:01 Transparent TRANSPARENT

28:01 VT Flag VTFLAG

27 :04 (reserved)

continued

8600 0650-000 B-1

COMS Header Layout

Table 8-l. Input Header Information (cont.)

Word COMS Field Name Language Field Name

23:23 (not used)

00:01 (reserved)

5 Timestamp TIMESTAMP

3.6 COBOL74 CD: MESSAGE TIME

6 Station Designator STATION

3.6 COBOL74 CD: SYMBOLIC SOURCE

7 Text Length TEXTLENGTH

3.6 COBOL74 CD: TEXT LENGTH

8 (not used)

9 Status Va I ue STATUSVALUE

3.6 COBOL74 CD: STATUS KEY

10 Message Count M ESSAG ECOU NT

3.6 COBOL74 CD: MESSAGE COUNT

Restart RESTART

11 Agenda Designator AGENDA

12 SDF Plus Information SDFINFO

13 SDF Plus Form Record SDFFORMRECN U M

14 SDF Plus Transaction SDFTRANSNUM

15 Retries to Go RETRIESLEFT

16~31 (not used)

continued

8-2 8600 0650-000

Word

32-N

8600 0650-000

COMS Header Layout

Table 8-1. Input Header Information (cont)

COMS Field Name

Conversation Area

Language Field Name

ALGOL: (user-defined)

COBOL74: CONVERSATION AREA

Pascal: CONVERSATIONAREA

RPG: CONVERSATION

8-3

COMS Header Layout

Defining Output Header Information

8-4

Table B-2 lists the words, the COMS field names, and the Language field names
associated with standard COMS output header layout.

Table B-2. Output Header Information

Word COMS Field Name Language Field Name

o Destination Count DESTCOUNT

3.6 COBOL74 CD: DESTINATION COUNT

1 Text Length TEXTLENGTH

3.6 COBOL74 CD: TEXT LENGTH

2 Status Value STATUSVALUE

3.6 COBOL74 CD: STATUS KEY

3 (FIELDS) FIELDS

47:16 Carriage
Control

47:08 (Advancing
Amount)

39:01 (not used)

38:01 (Before or
After)

37 :03 (Action)

34:01 (New Page)

33:01 (No carriage
Return)

32:01 (No Line
Feed)

31:05 (reserved)

26:01 Transparent TRANSPARENT

25:01 VT Flag VTFLAG

continued

8600 0650-000

Word

4

5

6

7-10

11

12

13

8600 0650-000

COMS Header Layout

Table B-2. Output Header Information (cant.)

COMS Field Name

24:01 Delivery
Confirmation Flag

23:24 Delivery
Confirmation Key

Destination
Designator

Next Input Agenda
Designator

(TOGGLES)

47 :45 (not used)

02:01 Casual Output

01:01 Set Next Input
Agenda

00:01 Retain
Transaction Mode

(not used)

Agenda Designator

SDF Information

SDF Plus Form
Record

Language Field Name

CONFIRMFLAG

CONFIRMKEY

DESTINATIONDESG

3.6 COBOL74.CD: DESTINATION TABLE

NEXTINPUTAGENDA

TOGGLES

CASUALOUTPUT

SETNEXTINPUTAGENDA

RETAI NTRANSACTION MODE

AGENDA

SDFINFO

SDFFORMRECNUM

continued

8-5

COMS Header Layout

Table B-2. Output Header Information (cont.)

Word COMS Field Name Language Field Name

14 SDF Plus Transaction SDFTRANSNUM

15 Retries to Go RETRIESLEFT

16-31 (not used)

32-N Conversation Area ALGOL (user-defined)

COBOL74: CONVERSATION AREA

Pascal: CONVERSATIONAREA

RPG: CONVERSATION

B-6 8600 0650-000

Appendix C
Sample COBOL74 Programs

This appendix provides three sample COBOL74 programs that demonstrate

• Using a default agenda with minimal features of the CaMS direct-window interface

• Applying a Screen Design Facility (SDF) form as a processing item to messages .

• Routing by trancode with different SDF forms for sending and receiving messages

(A CaMS interface to SDF is not currently available through the ALGOL, Pascal, or
RPG programming languages.)

To write programs with messages routed by CaMS, you must be familiar with CaMS as
a whole. You should understand the information presented in this guide and be familiar
with the information explained in the following documents:

• The COMS Configuration Guide

• The COMS Operations Guide

• The SDF Operations and Programming Guide

• The COBOLANSI-74 Reference Manual, Volumes 1 and 2

Also, if you plan to use SDF extensively, you should know how to create SDF forms and
formlibraries before you try to write application programs that use them.

The first sample program in this appendix, Program 1, shows a simple way to use the
CaMS direct-window interface with a default agenda. The second sample program
modifies the first by adding an SDF form as a processing item. Program 3 modifies the
second example by implementing trancode routing and a second SDF form.

The actual program listings for each sample program are proceeded by the following:

• A brief introductory description of the program

• A discussion of the CaMS and SDF entities you must define for the program

• Guidelines for the declarations and routines used in the program

• Procedures for running and terminating the program

Note: The procedures for running and terminating the sample programs
assume that your station has been defined to COMS.

8600 0650-000 C-l

Sample COBOL74 Programs

Program 1: Using a Default Agenda
This is an echo program that returns a duplicate of each message a station sends. To use
this program, you need to create a default agenda that specifies the echo program as the
destination for messages received and sent.

Defining COMS Entities for Program 1

Because this is a direct-window program, it must be initiated by COMS. You cannot
start this program with the CANDE RUN or EXECUTE commands. To cause COMS
to initiate the program and route messages for it, use the CaMS Utility menus or
commands, as described in the COMS Configuration Guide, to define the following
CaMS entities in the order presented:

1. Define a window that this program will access. Supplying notify-on and notify-open
text for the window might help you understand how the program operates within
CaMS.

2. Define the program name to CaMS.

3. Define a default agenda whose destination is this program, and associate this agenda
with the window you defined in step 1.

(You do not need to define any processing items for use with this agenda, because
Program 1 does not apply processing items to the messages that it sends or
receives.)

Declarations and Routines for Program 1

C-2

Program 1 shows the following basic, minimal declarations and routines needed for an
application program that uses CaMS direct windows:

• A message area

• An input header

• An output header

• A routine that initializes the program to run under CaMS

• A main processing loop that executes the SEND and RECEIVE statements

The first three components are explained in Section 3, "Communicating with COMS
through Direct Windows." A main processing loop that goes to end of job (EOJ) if the
Status Value field of the input header contains a value of 99 is considered a standard
termination routine for a program using the direct-window interface. Minimally, you
should use the COBOL74 MOVE statement to specify values for the following fields of
the output header before executing the SEND statement:

1. Move the value 1 to the Destination Count field of the output head~r to specify a
single destination for outgoing messages.

2. Move a value (a station or program designator) into the Destination field of the
output header to indicate a particular destination for outgoing messages.

8600 0650-000

Sample COBOL74 Programs

3. Move a value representing the length of the output message text into the Text
Length field of the output header.

Using Program 1

After you have defined the required entities with the CaMS Utility, you can start
Program 1 by issuing an ?ON < window name> command from your station, followed by
the first input message.

You can start the program automatically, without entering an input message, if you
specify a notify-open action for the window. You can specify a notify-open action either
with text or without text. If you do not specify text, CaMS sends a message with a
length of 0 (zero) to the program when you open the window.

Use the ?DISABLE PROGRAM <program name> command to terminate Program 1.

If you want the program to terminate automatically, specify a termination time limit
other than 0 (zero) when you use the CaMS Utility to define the program. You can
also use the COMS ?WINDOWS, ?CLOSE, ?SUSPEND, and ?RESUME commands to
manipulate this program. Refer to the COMS Operations Guide for more information
about these COMS commands.

Progra m 1 Listi ng

Following is the listing of Program 1:

8600 0650-000 C-3

Sample COBOL74 Programs

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COMS-NAME ·PIC X(072).
01 COMS-MESSAGE-AREA.

05 COMS-MESSAGE PIC X(1920).
COMMUNICATION SECTION.

INPUT HEADER COMS-IN.
OUTPUT HEADER COMS-OUT.

PROCEDURE DIVISION.
CONTROLLER-SECTION SECTION 1.
CONTROLLER •.

PERFORM START-UP-SECTION.
PERFORM PROCESS-IT-SECTION

UNTIL STATUSVALUE OF COMS-IN = 99.
STOP RUN.

START-UP-SECTION SECTION 50.
START-UP.

MOVE ATTRIBUTE NAME OF ATTRIBUTE EXCEPTIONTASK OF
ATTRIBUTE EXCEPTIONTASK OF MYSELF TO COMS-NAME.

CHANGE ATTRIBUTE TITLE OF "DCILIBRARY"
TO COMS-NAME.

PROCESS-IT-SECTION SECTION 1.
PROCESS-IT.

RECEIVE COMS-IN MESSAGE INTO COMS-MESSAGE.
IF STATUSVALUE OF COMS-IN NOT = 99
IF NOT FUNCTIONSTATUS OF COMS-IN < 0

MOVE 1 TO DESTCOUNT OF COMS-OUT
MOVE STATION OF COMS-IN TO DESTINATIONDESG OF COMS-OUT
MOVE TEXT LENGTH OF COMS-IN TO TEXTLENGTH OF COMS-OUT
SEND COMS-OUT FROM COMS-MESSAGE
GO TO PROCESS-IT.

END-OF-JOB.
STOP RUN.

Program 2: Using an SDF Form Processing Item
This program is a modification of Program 1. It shows how to use a CaMS agenda to
apply an SDF form as a processing item to messages received and sent. The program
shows the most basic CaMS and SDF concepts and COBOL74language extensions
needed to write a COBOL74 program that uses a CaMS direct window and an SDF
form.

Defining COMS and SDF Entities for Program 2

C-4

Before writing a program like this, you must have created a form in a formlibrary using
screens in the SDF system. For this particular program, you can use default values in
the fields of the formlibrary Definition screen and the Form Definition screen, except for

8600 0650-000

Sample COBOL74 Programs

library sharing. Specifically, you must choose SHAREDBYRUNUNIT for the Library
Sharing option on the formlibrary Definition screen. (Refer to the A Series Screen
Design Facility (SDF) Operations and Programming Guide for detailed instructions on
creating SDF entities.)

N ext, you must define the CaMS and SDF entities that are needed to perform .
direct-window message processing with an SDF form. Use the CaMS Utility menus or
commands to define the following entities in the order presented:

1. Define a CaMS library and assign the name of the formlibrary generated by SDF as
the library title. Include the appropriate usercode and pack as part of the title.

2. Define a CaMS processmg item that is associated with the formlibrary already
defined. The Actual Name attribute should be PROC _ITEM. The library name
should be the name of the library that you defined in step 1.

3. Define a CaMS processing-item list that includes the processing item already
defined.

4. Define a CaMS direct window.

5. . Define the CaMS program name.

6. Define a default output agenda that names the direct window already defined and
the destination program. Place the processing-item list you defined in the agenda.

Declarations and Routines for Program 2

Like Program 1, Program 2 requires the following minimal declarations and routines:

• A message area

• An input header

• An output header

• A routine that initializes the program to run under CaMS

Additionally, Program 2 can use the same standard COMS termination routine as
Program 1.

Program 2, however, invokes the SDF formlibrary, and the SDF form is applied to
messages as a processing item. To incorporate an SDF form into this scheme, use the
following declarations and routines, in the order presented:

1. Use the SPECIAL-NAMES paragraph in the Configuration Section to specify the
program name and the dictionary that stores the SDF formlibrary.

2. Declare the SDF formlibrary as a level 01 record, using the following syntax:

01 <generated formlibrary name> FROM DICTIONARY.

This declaration invokes the formlibrary. The compiler copies in all the record
descriptions for the formlibrary, causing a break in the sequence range of the
program.

3. Declare a level 01 record for the Agenda Name using the following data type:

8600 0650-000 C-5

Sample COBOL74 Programs

Agenda Name: PICX(17) VALUE "<agendaname>".

4. Declare a level 01 record for the Agenda Designator using the following data type:

Agenda Designator: PIC S9(11) USAGE BINARY.

5. In the initialization routine, obtain an agenda designator by calling the
GET_DESIGNATOR_USING_NAME service function. Be sure to include the
service function call after the ENABLE INPUT statement.

6. In the main processing loop, let the RECEIVE statement use the SDF form as a
message area with the following syntax:

RECEIVE <input header name> MESSAGE INTO <SDF form name>.

7. Move the agenda designator into the Agenda Designator field of the output header
to specify the message destination for the SEND statement.

S. Move the FORM-KEY, which identifies the desired SDF form to the SDF system,
into the Conversation Area field of the output header.

9. Let the SEND statement use the SDF form as the message area with the following
syntax:

SEND <output header name> FROM <SDF form name>.

Using Program 2

When COMS responds to the ?ON < window name> command by placing the station in
the direct wiridow specified in the command, you must transmit an initial message from
the station in order to receive the first SDF form. Once y~u receive the SDF form, the
program echoes each message you transmit, because the destination defined for the
agenda is the echo program itself.

Use the ?DISABLE PROGRAM. <program name> command or a termination time
limit other than 0 (zero) to terminate Program 2.

When you use a program that invokes SDF forms, you might need to recompile the
program whenever you regenerate the SDF formlibrary, if you have made changes to the
formlibrary.

Program 2 Listing

Following is the listing of Program 2:

C-6 8600 0650-000

Sample COBOL74 Programs

$SET LIST WARNSUPR
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SPECIAL-NAMES.
DICTIONARY IS "SCREENDESIGN",
PROGRAM-NAME IS "ECHOWITHSDF".

DATA DIVISION.
WORKING-STORAGE SECTION.
01 COMS-NAME
01 SDF formlibrary

PIC X(072).
FROM DICTIONARY.

**
* THE FOLLOWING LINES OF CODE ARE GENERATED BY THE SYSTEM: *
**
*--DICTIONARY
*--DICTIONARY FORMLIST< SDF formlibrary >.

* SDFFORM.
* ACTION PIC X(10).
* CHOICE PIC X(20).
* MESSAGEAREA PIC X(30).

*
*
*
*
*
*

**
01 SDF-AGENDA-NAME
77 SDF-AGENDA-DESIGNATOR
77 SDF-CALL-ERROR
COMMUNICATION SECTION.

INPUT HEADER COMS-IN.
OUTPUT HEADER COMS-OUT

CONVERSATION AREA.
02 COMS-OUT-CONVERSATION

PROCEDURE DIVISION.
CONTROLLER-SECTION
CONTROLLER.

PERFORM START-UP-SECTION.
PERFORM PROCESS-IT-SECTION

PIC X(I7) VALUE IISDFAGENDA".
USAGE REAL.
PIC S9(11) USAGE BINARY.

REAL.

SECTION 1.

UNTIL STATUSVALUE OF COMS-IN = 99.
STOP RUN.

8600 0650-000 C-7

Sample COBOL74 Programs

START-UP-SECTION SECTION 50.
START-UP.

MOVE ATTRIBUTE NAME OF ATTRIBUTE EXCEPTIONTASK OF
ATTRIBUTE EXCEPTIONTASK OF MYSELF TO COMS-NAME.

CHANGE ATTRIBUTE TITLE OF II DCI LIBRARY"
TO COMS-NAME.

ENABLE INPUT COMS-IN KEY "ONLINE".
CALL "GET DESIGNATOR USING NAME IN DCILIBRARY" - --

USING SDF-AGENDA-NAME
,VALUE AGENDA
,SDF-AGENDA-DESIGNATOR.

GIVING SDF-CALL-ERROR.
PROCESS-IT-SECTION SECTION 1.
PROCESS-IT.

RECEIVE COMS-IN MESSAGE INTO SDFFORM.
IF STATUSVALUE OF COMS-IN NOT = 99
IF NOT FUNCTIONSTATUS OF COMS-IN < 0

MOVE 1 TO DESTCOUNT OF COMS-OUT
MOVE STATION OF COMS-IN TO DESTINATIONDESG OF COMS-OUT
MOVE TEXT LENGTH OF COMS-IN TO TEXT LENGTH OF COMS-OUT
MOVE SDF-AGENDA-DESIGNATOR TO STATUSVALUE OF COMS-OUT
MOVE FORM-KEY(SDFFORM) TO COMS-OUT-CONVERSATION

SEND COMS-OUT FROM SDFFORM.
END-OF-JOB.

Program 3: Routing by Trancode
This echo program is a modification of Program 2. It shows routing by trancode and the
use of two SDF forms as processing items.

Defining COMS and SDF Entities for Program 3

C-8

Before writing a program like this, you must have created two forms in a formlibrary
using screens in the SDF system. To use routing by trancode with an SDF form, you
must specify the following values when completing these SDF screens:

1. On the formlibrary Definition screen, make the following choices:

• Choose SHAREDBYRUNUNIT for the Library Sharing option.

• Answer Y, for yes, to the question, "Will this library process forms based on
message keys?"

• Answer Y, for yes, to the question, "Will the Module Index be used for routing
with COMS interface?"

2. After creating the forms with the Form Definition screen, use the Additional Field
Definition screen to define a message key for each form. For each formyou are
defining, you need to define a message key at the same offset and with the same
length. (Use the first field on each form for the message keys.) You also need to
define default values for the message keys.

8600 0650-000

Sample COBOL74 Programs

3. The message key in SDF corresponds to the trancode in CaMS. The entity referred
to as the COMS index or module index in SDF corresponds to the module function
index (MFD in COMS. The FORM-KEY used in a program like Program 3 identifies
to SDF which form the program is invoking.

N ext, all of the COMS entities defined for Program 2 need to be defined for Program 3.
These include the COMS library, a processing item and processing-item list, a direct
window, the program name, and an agenda.

Program 3 can use the same window as Program 2, but it requires a separate agenda,
processing item, and processing-item list. Also, you must define two trancodes for
routing the two SDF forms to the program.

Use the COMS Utility to assign the window and agenda to each trancode. You also need
to assign an MFI, which is an integer value associated with the trancode used in the
application program to reference the trancode.

Declarations and Routines for Program 3

All the guidelines for program declarations and routines presented for Programs 1 and
2 apply to Program 3 as well. However, the clause SAME RECORD AREA has been
added to the level 01 record declaration for the name of the generated formlibrary. In a
program that uses more than one SDF form, the SAME RECORD AREA clause makes
every form a redefinition of the other forms.

In Program 3, the second form description for an SDF form redefines the form
description for the first SDF form. Since the program does not know what kind of
message it will receive, it must be able to redefine the form that serves as the message
area.

In the main processing loop, an IF -THEN-ELSE statement is used to determine which
SDF form to invoke based on the MFI value. After the program receives a message,
CaMS places a value for the MFI (if defined) into the COMS-in-Function-Index field of
the input header. In the case of Program 3, entering one of the two defined trancodes
from the terminal causes COMS to place the appropriate MFI value in the Function
Index field of the input header. The program.can then execute the corresponding branch
of the IF-THEN~ELSE statement.)

Before executing the SEND statement, the program moves the FORM-KEY that
references the required SDF form into the Conversation Area field of the output header.
The following syntax should be used:

MOVE FORM-KEY(SDFFORM) TO COMS-OUT-CONVERSATION

Using Program 3.

When CaMS responds to the ?ON < window name> command by placing the station in
that direct window, enter from your terminal one of the trancodes you defined to invoke
one of the two SDF forms used in this example.

8600 0650--000 C-9

Sample COBOL74 Programs

Use the ?DISABLE PROGRAM <program name> command or specify a termination
time limit other than 0 (zero) for the program to terminate Program 3.

Note: When using a program that invokes SDF forms, you must recompile
the program whenever you regenerate the SDF formlibrary.

Program 3 Listing

C-IO

Following is a listing of Program 3:

$SET LIST WARNSUPR
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SPECIAL-NAMES.
DICTIONARY IS "SCREENDESIGN",
PROGRAM-NAME IS "ECHOWITHSDFTBR".

DATA DIVISION.
WORKING-STORAGE SECTION.
01 COMS-NAME
01 SDF form library

PIC X(072).
FROM DICTIONARY; SAME RECORD AREA.

**
* THE FOLLOWING LINES OF CODE ARE GENERATED BY THE SYSTEM: *
**
*--DICTIONARY *
*--DICTIONARY FORMLIST < SDFFORM LIBRARY>. *
* SDFFORM. *
* ACTION PIC X(10). *
* CHOICE PIC X(20). *
* MESSAGEAREA PIC X(30). *
* SDFFORM2 REDEFINES SDFFORM. *
* ACTION2 PIC X(10). *
* NAME2 PIC X(30). *
* JITLE2 PIC X(20). *
**
01 SDF-AGENDA-NAME
77 SDF-AGENDA-DESIGNATOR
77 SDF-CALL-ERROR
COMMUNICATION SECTION.

INPUT HEADER COMS-IN.
OUTPUT HEADER COMS-OUT

CONVERSATION AREA.
02 COMS-OUT-CONVERSATION

PROCEDURE DIVISION.
CONTROLLER-SECTION
CONTROLLER.

PERFORM START-UP-SECTION.
PERFORM PROCESS-IT-SECTION

PIC X(I]) VALUE "SDFTBRAGENDAu •

USAGE REAL.
PIC S9(11) USAGE BINARY.

REAL.

SECTION 1.

UNTIL STATUSVALUE OF COMS-IN = 99.
STOP RUN.

8600 0650-000

8600 0650-000

Sample COBOL74 Programs

START-UP-SECTION SECTION 50.
START-UP.

MOVE ATTRIBUTE NAME OF ATTRIBUTE EXCEPTIONTASK OF
ATTRIBUTE EXCEPTIONTASK OF MYSELF TO COMS-NAME.

CHANGE ATTRIBUTE TITLE OF "DCI LIBRARY"
TO COMS-NAME.

ENABLE INPUT COMS-IN KEY "ONLINE".
CALL "GET_DESIGNATOR_USING_NAME" IN DCILIBRARY"

USING SDF-AGENDA-NAME
, VALUE (AGENDA)
,SDF-AGENDA-DESIGNATOR

GIVING SDF-CALL-ERROR.

PROCESS-IT-SECTION SECTION 1.
PROCESS-IT.

RECEIVE COMS-IN MESSAGE INTO SDFFORM.
IF STATUSVALUE OF COMS-IN NOT = 99
IF NOT FUNCTIONSTATUS OF COMS-IN < 0

MOVE 1 TO DESTCOUNT OF COMS-OUT
MOVE STATION OF COMS-IN TO DESTINATIONDESG OF COMS-OUT
MOVE TEXTLENGTH OF COMS-IN TO TEXT LENGTH OF COMS-OUT
MOVE SDF-AGENDA-DESIGNATOR TO STATUSVALUE OF COMS-OUT
IF FUNCTIONINDEX OF COMS-IN = 1 THEN

ELSE

MOVE FORM-KEY(SDFFORM) TO COMS-OUT-CONVERSATION
SEND COMS-OUT FROM SDFFORM

IF FUNCTIONINDEX OF COMS-IN = 2 THEN
MOVE FORM-KEY(SDFFORM2) TO COMS-OUT-CONVERSATION
SEND COMS-OUT FROM SDFFORM2.

END-OF-JOB.

C-ll

C-12 8600 0650-000

Appendix D
Sample Processing Items

This appendix provides two sample processing items and the set of global declarations
that these processing items require. All these declarations should precede the code for
the processing items, and therefore are listed first. The two sample processing items,
TPTOMARC and STATUS_LINE, are described later in this appendix.

Commentary within the code provides additional explanation.

Global Declarations
There are six sets of global declarations that do the following:

• Set the TITLE parameter.

• Define the input header parameters.

• Define the output header parameters.

• Define the STATE parameters.

• Define the result action values~

• Define the function values.

The code in the following pages of this section corresponds to the global declarations.

Setting the TITLE Parameter

The following code sets the TITLE parameter, which is used by the TPTOMARC
processing item. Note the sequence of steps described in the commentary.

8600 0650-000 0-1

Sample Processing Items

D-2

$ SET SHARING = SHAREDBYALL
BEGIN

% First, the code declares a library that is used to call COMS
% service functions.

LIBRARY COMS LIB(LIBACCESS = BYTITLE);

% The code below declares the GET_NAME_USING_DESIGNATOR
% service function entry point.

INTEGER PROCEDURE GET_NAME_USING_DESIGNATOR(STA_DESG, STA_NAME);
VALUE STA_DESG;
REAL STA DESG:

EBCDIC ARRAY STA_NAME[0];
LIBRARY COMS_LIB;

% The foll owi ng code decl ares the GET_DESIGNATOR_USING_NAME servi ce
% function entry point.
%

INTEGER PROCEDURE GET_DESIGNATOR_USING_NAME(STA_NAME, MNEMONIC,
STA_DESG);

VALUE MNEMONIC;
REAL STA DESG

EBCDIC ARRAY STA_NAME[0];
LIBRARY COMS_LIB;
DEFINE STATION MNEMONIC = 1#;

% Next, the code declares the global data structures and the locks and
% lock routines to manage them.
%

BOOLEAN
TITLE_SET;

EBCDIC ARRAY
TTL[0:299] ;

% This value is TRUE if the title of COMS_LIB
% has been set.

% Holds title of COMS LIB.

8600 0650-000

Sample Processing Items

% The following example has only one lock, the TITLE lock (TTL).
% When the title of COMS_LIB is set, the TITLE lock must be locked.

REAL
TTL_OWNER,
TTL_NUM;

% The PROCESSID of the owner of the TITLE lock.
% The PROCESSID of the last requestor of the TITLE
% lock.

EVENT
TTL_EVENT; % The event to PROCURE/LIBERATE if there is lock

% contention for the TITLE lock •.

% The following define causes the TITLE lock to be acquired. The
% define uses a modified form of FIBLOCK, an operating
% system lock type used by the logical I/O to lock files.
% The modifications of FIBLOCK reduce overhead with high lock
% contention.

% To ensure that locking TTL and identifying the owner of TTL
% either both occur or neither occur, the code disables external
% interrupts. .
%
%
%
%
%
%
%
%
%

DEFINE

NOTE

The following defines use the DMALGOL
constructs DISALLOW and ALLOW to enter
and exit control state. If the defines
are used, modify them only with extreme
care.

ACQUIRE_TTLLOCK =
BEGIN
DISALLOW;
IF READLOCK(PROCESSID, TTL_NUM) NEQ B THEN

DO
PROCURE (TTL_EVENT)

UNTIL
READLOCK(-l, TTL_NUM) = B;

TTL_OWNER:=PROCESSID;
ALLOW;
END#,

8600 0650-000 0-3

Sample Processing Items

D-4

% The following define relinquishes the TITLE lock. The define
% also disables external interrupts so that either of the
% following occurs:

% 1. The TITLE lock is relinquished and the owner of the TITLE
% lock is reset.

% 2. The TTL lock is not relinquished and the owner of the TITLE
% lock is not reset.

RELINQUISH_TTLLOCK =
BEGIN
DISALLOW;
TTL_OWNER: =0;
IF READLOCK(0, TTL_NUM) NEQ PROCESSID THEN

LIBERATE (TTL_EVENT) ;
ALLOW;
END#,

% The PROTECTION_HEADING define should be invoked once in every
% block that needs to acquire the TITLE lock. Thisdefine
% declares a dummy label and an EPILOG procedure, then invokes
% the ACQUIRE_TTLLOCK define. Therefore, this define must come
% after all declarations and·before all statements in a block.'

% The label is used to prevent programming errors by requiring
% the scope of the lock protection to be identified. The EPILOG
% procedure is used to relinquish the TITLE lock if it has been
%' acquired.

% The purpose of locking the TITLE lock in this way is to allow
% the COMS programs that invoke processing items to be
% discontinued while they are in processing item code. As
% a result, the lock does not remain locked. This procedure is
% used to keep global data structures from being left in
% half-changed states.

% If a lock is acquired, the owner can always be identified. If
% a program that is discontinued (DSed) is the owner of the lock,
% its EPILOG procedure will relinquish the lock. If a program
% left TTL locked, the next program to attempt to acquire the
% TITLE lock would have its processing suspended until the
% program is discontinued.

8600 0650-000

Sample Processing Items

PROTECTION_HEADING =
LABEL PROTECTION_LABEL;
EPILOG PROCEDURE PROTECT_MARC;

BEGIN
DISALLOW;
IF TTL_OWNER = PROCESSID THEN

RELINQUISH_TTLLOCK;
ALLOW;
END PROTECT MARC;

ACQUIRE_TTLLOCK #,

% The following is the dummy label declared in the
% PROTECTION_HEADING define. It is used to minimize programming
% errors by identifying the scope of the lock protection.

PROTECTION TRAILER =
PROTECTION LABEL: #;

% Since TITLE SET is never reset once it is TRUE, SET TITLE need
% never be called if TITLE SET is TRUE.

DEFINE
CHECK TITLE

PROCEDURE SET_TITLE;
BEGIN

= IF NOT TITLE SET THEN
SET_TITLE#;

% The SET_TITLE procedure is called only if TITLE_SET is FALSE.
% This procedure uses the PROTECTION_HEADING and
% PROTECTION_TRAILER defines to ensure proper access to the
% global TITLE lock and the TITLE_SET global variables. The
% function of this procedure is to set the title of COMS_LIB to
% the correct name.

PROTECTION_HEADING;

% The TITLE_SET Boolean must be checked under the lock. This
% checking closes the timing hole caused when multiple stacks
% call SET_TITLE simultaneously.
%

IF NOT TITLE SET THEN
BEGIN
REPLACE TTL BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMS_LIB.TITLE:=HEAD(STRING(TTL, 72), NOT 48"00");
TITLE_SET:=TRUE;
END;

PROTECTION_TRAILER;
END OF SET TITLE;

8600 0650-000 0-5

Sample Processing Items

Defining Input Header Parameters

The input header parameters are used for the ACCEPT, ENABLE INPUT, ENABLE
INPUT TERMINAL, DISABLE INPUT TERMINAL, and RECEIVE statements. These
parameters are used by the TPTOMARC processing item. The following code defines
input header parameters:

DEFINE
COMS_IN_PROGRAM .
COMS_IN_FUNCTION_INDEX
COMS_IN_USERCODE
COMS_IN_SECURITY_DESG
COMS_IN_DATE
COMS_IN_TIMESTAMP
COMS_IN_STATION
COMS_IN_TEXT_LENGTH
COMS_IN_END_KEY
COMS_IN_STATUS_KEY
COMS_IN_RST_lOC
COMS_IN_CD_SIZE(S)

= CD_IN [0] #,
= CD_IN [1] #,
= CD_IN [2] #,
= CD_IN[3]#,
= CD _ IN [4] # ,
= CD _ IN [5] # ,
= CD_IN [6] #,
= CD_IN[7]#,
= CD_IN[8]#,
= CD_IN [9] #,
= CD_IN [10] #,
= (STATE_CONVINX(S» #;

Defining Output Header Parameters

D-6

The output header parameters are used for sending data. These parameters are used
by the STATUS _LINE processing item. The following code defines output header
parameters:

DEFINE

COMS_OUT~COUNT

COMS_OUT_TEXT_lENGTH
COMS_OUT_STATUS_KEY
COMS_OUT_DESTIN_ERROR
COMS_OUT_DESTINATION
COMS_OUT_CONV_TSTAMP

= CD_OUT[0]#,
= CD_OUT[l]#,
= CD_OUT [2] #,
= CD_OUT [3] #,
= CD_OUT[4]#,
= % SDF FORM-KEY timestamp.

CD_OUT [STATE_CONVINX (STATE)] #,
= % MARC Multilingual System

% (MlS) message number.
CD_OUT[STATE_CONVINX(STATE)+l]#;

8600 0650-000

Sample Processing Items

Defining the STATE Parameters

The following code defines the STATE parameters, which is used by both processing
items:

DEFINE

STATE IN OUTF

STATE OUT
STATE IN

STATE CONVINXF

% [47:24]

% [23 :24J

% Available to the user.

% Reserved for COMS use.

[00:01J#, % 1 = Output header
% 0 = Input header

(S) = BOOLEAN(S).STATE IN OUTF#,
(S) = NOT STATE_OUT(S)#, -

[13:06J#, % Index to conversation area.

STATE_CONVINX (S) (S).STATE_CONVINXF#,

STATE MSG LOCF [15:02J#, % Valid data locations:
% 0 = USER_TEXT
% 1 = TEXT 1
% 2 = TEXT 2
% 3 = Invalid value

STATE MSG LOC (S) = S.STATE_MSG_LOCF#;

Defining the Result Action Values

The following code defines the result action values of the STATUS_LINE processing
item: .

DEFINE

CONTINUEV = 0#,
STOPV = 1#,
STOP_RETURNV = 2#;

Defining the Function Values

The following code defines the function values used by Menu-Assisted Resource Control
(MARC). These values are required by the TPTOMARC processing item.

DEFINE

8600 0650-000

FUNC NORMALMSGV
FUNC_CONTROLMSGV

= 0#, % A normal message (for example, No 1).
=-1#; % A control message (for example, A 1).

D-7

Sample Processing Items

TPTOMARC Processing Item

D-8

The TPTOMARC processing item translates the station designator associated with a
message from a program in a direct window into a designator that MARC recognizes. As
a result, programs in direct windows can send input messages to MARC, and MARC will
accept them. (MARC discards messages with designators that it does not recognize.)
The following code defines the TPTOMARC processing item:

REAL PROCEDURE TPTOMARC (STATE, CD_IN, USER_TEXT, TEXT_I,
TEXT_2, OUTPUT_PROC);

REAL STATE;
ARRAY CD_IN [0] ;
EBCDIC ARRAY USER_TEXT, TEXT_I, TEXT_2[0];
REAL PROCEDURE OUTPUT_PROC(STATE, CD, TEXT_I, TEXT_2);

REAL STATE;
ARRAY CD [0] ;
EBCDIC ARRAY TEXT_I, TEXT_2[0];
FORMAL;

BEGIN
EBCDIC ARRAY REFERENCE

MSGIN[0] , % Points to valid data.
STA_NAME[0]; % Points to scratch data area.

DEFINE
CAND (A, B) = (IF (A) THEN (B) ELSE FALSE)#;

IF CAND(STATE_IN(STATE) ,
COMS_IN_FUNCTION_INDEX = FUNC_NORMALMSGV OR
COMS_IN_FUNCTION_INDEX = FUNC_CONTROLMSGV) THEN

% The code above accepts input messages that are either normal
% input or control input. Output messages and messages with
% other function values are ignored.

% Checks whether input
% is not from a station.

BEGIN

% In the code above, the message has been rerouted by some
% other direct-window program. If more security is required,
% check the value of COMS_IN_PROGRAM here, and write a >

% procedure to provide the desired control.
%

8600 0650-000

8600 0650-000

Sample Processing Items

CASE STATE_MSG_LOC(STATE) OF
BEGIN
0:

MSGIN:=USER_TEXT;
STA_NAME:=TEXT_1;

1:
MSGIN:=TEXT_1;
STA_NAME:=TEXT_2;

2:
MSGIN:=TEXT_2;
STA_NAME:=TEXT_1;

END;

% MSGIN now references the text of the valid data and
% STA_NAME references an unused, scratch data area; for
% example, TEXT_lor TEXT_2.
%

% STA_NAME is resized to contain the largest possible
% station name.

IF SIZE(STA_NAME) LSS 300 THEN
RESIZE (STA_NAME, 300);

% Ordinarily, control messages are only identified by the
% NDLII. However, a processing item can change a message into
% a control message (and vice versa) by changing the function
% value in the Input CD. TPTOMARC looks at the first
% character of input. If the input begins with a question
% mark (1), the message is changed to a control message. This
% procedure allows programs to send control messages as well
% as noncontrol messages to MARC.
%

IF MSGIN [0] = II 1" THEN
COMS_IN_FUNCTION_INDEX:=FUNC_CONTROLMSGV

ELSE
COMS_IN_FUNCTION_INDEX:=FUNC_NORMALMSGV;

D-9

Sample Processing Items

% Before the program calls COMS service functions, the
% following code insures that the title of COMS~LIB has
% been set.

% The next two steps are essential.

% First, the code calls GET_NAME_USING_DESIGNATOR to
.% translate the station designator to the station name
% it represents.

REPLACE STA_NAME BY II II FOR 50 WORDS;
GET_NAME_USING_DESIGNATOR(COMS_IN_STATION,

STA_NAME);

% Second, the code calls GET_DESIGNATOR_USING_NAME to change
% the station name back to a station designator. Because a
% call is made on top of a MARC stack, the station designator
% returned represents dialogue 1 of the MARC window for the
% station name.

GET_DES IGNATOR_US I NG_NAME (STA_NAME, STATION_MNEMONIC ,
COMS-IN-STATION);

END;
END OF TPTOMARC;

STATUS LINE Processing Item

D-10

The STATUS_LINE processing item handles MARC error messages sent in response to
direct-window input from ET, MT, or TD terminals. The processing item causes the error
message to be displayed on the status line of the terminal. As a result, the screen of the
user's screen is not disturbed by error messages received by the terminal.

8600 0650-000

Sample Processing Items

Note that MARC uses the second word of the conversation area
(CaMS_OUT _ CONY _ MSGN) as follows:

• If the value CaMS_OUT _ CONY _ MSGN ranges from 0 through 65535, then the
value is the MultiLingual System (MLS) message number of the last MLS message
MARC formatted into the output.

• If the value of CaMS_OUT _ CONY _ MSGN ranges from -65535 through
-1, then the value is a valid MLS message number of the last MLS message
MARC formatted. However, the MLS message either was not found in the
OUTPUTMESSAGE array or was not in the original language requested. This code
is provided to show how to use an output processing item to monitor proper message
translations.

• Any other value for CaMS_OUT _ CONY _ MSGN means that MARC did not
format an MLS message number into the output. MARC places the value
4 "000000100000" (representing -65536) into CaMS_OUT _ CONY _ MSGN to
represent an invalid value.

8600 0650-000 D-11

Sample Processing Items

D-12

The following code defines the STATUS_LINE processing item:

REAL PROCEDURE STATUSLINE(STATE, CD_OUT, USER_TEXT, TEXT_1,
TEXT_2,OUTPUT_PROC);

REAL STATE;
ARRAY CD_OUT[0];
EBCDIC ARRAY USER_TEXT, TEXT_1, TEXT_2[0];
REAL PROCEDURE OUTPUT_PROC(STATE, CD, TEXT_1, TEXT_2);

REAL STATE;
ARRAY. CD [0] ;
EBCDIC ARRAY TEXT_1, TEXT_2[0];
FORMAL;

BEGIN
DEFINE

DC1V = 48 11 11 11 #, % Blind transmission for
% ET, MT, and TD terminals.

ESCV = 48 11 27 11 #, % Escape character for
% ET, MT, and TD terminals.

HOMEV = 48 11 3C"#, % Home character for ET, MT, and TD
% terminals.

STATUS_LINE_SZ = 60#, % Maximum number of characters allowed
% on the status line.

LAST_WORD = «(STATUS_LINE_SZ+30)DIV 6)-1)#;
REAL

MSGN, % MLS message number.
OUTPUT_MSG_LN; % Size of text placed on the status line.

EBCDIC ARRAY REFERENCE
INP _DATA [0] ,
OUT_DATA[0];

REAL ARRAY REFERENCE
ROUT_DATA [0];

IF STATE_OUT(STATE) THEN
BEGIN

% The following code is an output message. Input messages are
% ignored.
%

8600 0650-000

8600 0650-000

Sample Processing Items

MSGN:=COMS_OUT_CONV_MSGN(STATE);
IF MSGN GEQ 2600 AND MSGN LSS 2900 THEN

BEGIN

% MSGN contains the MLS message number placed in the output
% conversation area by MARC.

% MSGN values between 2600 and 2900 are used by MARC to
% denote error responses caused by an input to a direct
% window. Following is an example of such a response:

% MESSAGE REJECTED, THE PROGRAM IS DISABLED. TEXT = ••••

CASE STATE_MSG_LOC(STATE) OF
BEGIN
0:

1:

% In the following code, the data is in USER_TEXT. This
% data will be reformatted into TEXT 1.

INP_DATA:=USER_TEXT;
OUT_DATA:=TEXT_l;
STATE_MSG_LOC(STATE):=l;

% In the following' code, the data is in TEXT 1. This
% data will be reformatted into TEXT_2.
%

INP_DATA:=TEXT_l;
OUT_DATA:=TEXT_2;
STATE_MSG_LOC(STATE):=2;

0-13

Sample Processing Items

D-14

2:

% In the following code, the data is in TEXT 2. This
% data will be reformatted into TEXT 1.

INP_DATA:=TEXT_2;
OUT_DATA:=TEXT_1;
STATE_MSG_LOC(STATE):=l;

END; % CASE

% INP_DATA now references the data area containing the valid
% data. OUT_DATA now references an unused scratch area. The
% purpose of this code is to reformat the input message from
% INP_DATA into OUT_DATA, and add the appropriate control
% characters.

% If OUT DATA is too small, it is resized.

IF SIZE(OUT_DATA) LSS (STATUS_LINE_SZ+30) THEN
RESIZE (OUT_DATA, STATUS_LINE_SZ+30);

% If the error message sent to the terminal is longer than
% the smallest status line of an ET, MT, or TD terminal, the
% message will be truncated.

% The following code reformats the message.
%

REPLACE OUT_DATA[0] BY
DC1V, % Suppresses NDLII editing.
ESCV, II RS II , % Wri tes to the status 1 i ne.
110011

, % Leaves room for the hexadecimal length
% of the text to be placed on the

INP _DATA [0] FOR
OUTPUT_MSG_LN,

HOMEV,
ESCV, IIW II

-;

% status line.
% Moves actual data.

% Leaves cursor in the home position.
% Puts terminal into forms mode.

8600 0650-000

Sample Processing Items

% The following code uses the HEXTOEBCDIC translation table
% to translate the binary value of OUTPUT_MSG_LN into its
% 2-character EBCDIC representation expressed in hexadecimal
% notation.

% ROUT DATA (a type-real-array reference variable to
% OUT_DATA) is used to generate the HEX pointer required by
% the HEXTOEBCDIC translation table.

ROUT_DATA:=OUT_DATA;
ROUT_DATA[LAST_WORD].[47:8]:=OUTPUT_MSG_LN;
REPLACE OUT_DATA[4] BY POINTER(ROUT_DATA[LAST_WORD],4)

FOR 2 WITH HEXTOEBCDIC;

% The following code updates the length field in the Output
% CD to reflect the edited message.

COMS_OUT_TEXT_LENGTH:=OUTPUT_MSG_LN+9;
END;

END;
END OF STATUS LINE;

EXPORT

END.

STATUSLINE,
TPTOMARC;

FREEZE(TEMPORARY);

8600 0650-000 0-15

D-16 8600 0650-000

Appendix E
Sample COBOL74 Processing
Item Interface

Processing items can be written in any programming language that ALGOL can call.
This appendix provides an example ofa COBOL74 program that can be bound to an
ALGOL shell. Included in the example is a sample Binder program. (For further
information on Binder programs, see the A Series Binder Programming Reference
Manual.)

% The assumption in Binder is that the object for this program unit
% is titled 1I0BJECTjCOMS/PROCESSINGITEM/ALGOLSHELL".

BEGIN
REAL PROCEDURE PROCESSING ITEM

(STATE,
CD,
USER_DATA,
TEXT_I,
TEXT_2,
OUTPUT _PROC) ;

REAL STATE;
ARRAY CD [0];
EBCDIC ARRAY USER_DATA, TEXT_I, TEXT 2 [0];
REAL PROCEDURE OUTPUT PROC

(STATE,
CD,
TEXT_I,
TEXT_2);

REAL STATE;
ARRAY CD [0];
EBCDIC ARRAY TEXT_I, TEXT_2 [0];
FORMAL;

86000650-000 E-l

Sample COBOL74 Processing-Item Interface

E-2

BEGIN % PROCESSING_ITEM

% s1nce we cannot declare a typed procedure in COBOL14, we must
% simulate it by passing the result back from the subprogram
% as a parameter local to the shell, and then setting the value of the
% shell (a typed procedure) to the value returned in the parameter.

% This applies as well to calls to OUTPUT_PROC from the COBOL74
% program--we cannot call a typed procedure, so we declare an untyped
% procedure in the shell, and pass the result back to the COBOL74
% program as a parameter.

% Note that external to the COBOL74 program, the parameters are REALs.
% Internally they are integers; hence, the double definition.

% There are two ALGOL procedures declared global to the COBOL74 program
% to resize the text arrays (which can have zero length on entry).
% NEWTEXTSIZE is a parameter used by the subprogram and these two
% procedures.

REAL
RETURNRESULTREAL, % from the subprogram
NEWTEXTSIZEREAL, % for resizing of arrays if needed
OUTPUTPROCRESULTREAL; % result from OUTPUT_PROC

INTEGER
RETURNRESULT = RETURNRESULTREAL,
NEWTEXTSIZE = NEWTEXTSIZEREAL,
OUTPUTPROCRESULT = OUTPUTPROCRESULTREAL;

PROCEDURE RESIZE_TEXT_l_IF_NEEDED;
BEGIN % to avoid SEG ARRAY errors:
IF NEWTEXTSIZE GEQ SIZE (TEXT_I) THEN

RESIZE (TEXT_I, NEWTEXTSIZE * 2, RETAIN);
END;

PROCEDURE RESIZE_TEXT_2_IF_NEEDED;
BEGIN % likewise:
IF NEWTEXTSIZE GEQ SIZE (TEXT_2) THEN

RESIZE (TEXT_2, NEWTEXTSIZE * 2, RETAIN);
END;

8600 0650-000

Sample COBOL74 Processing-Item Interface

PROCEDURE CALL_OUTPUT_PROC;
BEGIN
OUTPUTPROCRESULTREAL := OUTPUT PROC (STATE, CD, TEXT_l, TEXT_2);
END;

PROCEDURE SUBP; EXTERNAL; % This is the COBOL74 subprogram

% PROCESSING_ITEM EXECUTABLE
%
%
%

%
%
%
%

Call the COBOL74 SUQprogram:

SUBP;

Set PROCESSING_ITEM. VALUE to the result passed from the
COBOL74 subprogram:

PROCESSING_ITEM := RETURNRESULTREAL;

END OF PROCESSING_ITEM;

EXPORT PROCESSING_ITEM;

FREEZE (PERMANENT);

END.
%%%%%%%%%%% End of ALGOL host for COBOL74 processing-item subprogram.

SAMPLE COBOL74 SUBPROGRAM FOR PROCESSING ITEM

* The assumption in BINDER is that the object for this program unit
* is titled IOBJECTjCOMSjPROCESSINGITEMjSUBPROGRAM".
*
* Note: The COBOL74 subprogram should be declared at LEX LEVEL 4.
*

*

*

$LEVEL = 4

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* COMS-STATE, COMS-NEW-TEXT-SIZE, COMS-RETURN-RESULT,
* COMS-OUTPUTPROC-RESULT, COMS-IN-CD-ARRAY,
* COMS-IN-TEXT-l, COMS-IN-TEXT-2, and COMS-USER-DATA are all
* global to the subprogram and MUST be so declared.

8600 0650-000 E-3

Sample COBOL74 Processing-Item Interface

E-4

*
* Everything else is local to this subprogram.
* Try to minimize local data to avoid significant
* overhead due to stack building and teardown, since
* the local stack for this program will be built every time
* i tis ca 11 ed.
*

77 COMS-STATE PICTURE S9(11) USAGE IS BINARY GLOBAL.
77 COMS-NEW-TEXT-SIZE PICTURE S9(11) USAGE IS BINARY GLOBAL.
77 COMS-STATE-I-OR-O PICTURE S9 (11) USAGE IS BINARY.
77 COMS-STATE-CONV-INX PICTURE S9(11) USAGE IS BINARY.
77 COMS-STATE-MSG-LOC PICTURE S9(11) USAGE IS BINARY.
77 COMS-STATE-USER-FIELD PICTURE S9(11) USAGE IS, BINARY.
77 COMS-RETURN-RESULT PICTURE S9(11) USAGE IS BINARY GLOBAL.
77 COMS-OUTPUTPROC-RESULT PICTURE S9(11) USAGE IS BINARY GLOBAL.
01 COMS-IN-CD-ARRAY USAGE IS BINARY GLOBAL.

03 COMS-IN-PROGRAM PICTURE S9 (11) USAGE IS BINARY.
03 COMS-IN-FUNCTION-INDEX PICTURE S9(11) USAGE IS BINARY.
03 COMS-IN-USERCODE PICTURE S9 (11) USAGE IS BINARY.
03 COMS-IN-SECURITY-DESG PICTURE S9 (11) USAGE IS BINARY.
03 COMS-IN-DATE PICTURE S9(11) USAGE IS BINARY.
03 COMS-IN-TIMESTAMP PICTURE S9 (11) ,USAGE IS BINARY.
03 COMS-IN-STATION PICTURE S9(11) USAGE IS BINARY.
03 COMS-IN-TEXT-LENGTH PICTURE S9 (11) USAGE IS BINARY.
03 COMS-IN-END-KEY PICTURE S9 (11) USAGE IS BINARY.
03 COMS-IN-STATUS-KEY PICTURE S9(11) USAGE IS BINARY.
03 COMS-IN-RST-LOCATOR PICTURE S9(11) USAGE IS BINARY.

66 MARC-MESSAGE-NUMBER RENAMES COMS-IN-STATION.

01 COMS-IN-TEXT-l PICTURE X (1920) GLOBAL.
01 COMS-IN-TEXT-2 PICTURE X (1920) GLOBAL.
01 COMS-IN-USER-DATA PICTURE X(1920) GLOBAL.
PROCEDURE DIVISION.

*
DECLARATIVES.
CHECK-TEXT-1-SIZE SECTION.

USE AS GLOBAL PROCEDURE.
CHECK-TEXT-2-SIZE SECTION.

USE AS GLOBAL PROCEDURE.
COMS-OUTPUT-PROC SECTION.

USE AS GLOBAL PROCEDURE.
END DECLARATIVES.

*
MAIN-SECTION.
ENTRY -PARAGRAPH.

8600 0650-000

Sample COBOL74 Processing-Item Interface

*
* Split the fields in STATE into separate words so they can be
* more easily examined/manipulated in the subprogram:

*
*
*
*

8600 0650-000

MOVE 0 TO COMS-STATE-I-OR-O,
COMS-STATE-CONV-INX,
COMS-STATE-MSG-LOC,
COMS-STATE-USER-FIELD.

MOVE COMS-STATE TO COMS-STATE-I-OR-O [0:0:1].
MOVE COMS-STATE TO COMS-STATE-CONV-INX [13:5:6].
MOVE COMS-STATE TO COMS-STATE-MSG-LOC [15:1:2].
MOVE COMS-STATE TO COMS-STATE-USER-FIELD [47:23:24].

Body of this particular processing item:

IF COMS-STATE-I-OR-O > 0
IF MARC-MESSAGE-NUMBER > 2900
OR MARC-MESSAGE-NUMBER < 2600

MOVE 1 TO COMS-RETURN-RESULT
GO TO RETURN-TO-COMS.

IF COMS-IN-FUNCTION-INDEX = -1
MOVE 1 TO COMS-RETURN-RESULT
GO TO RETURN-TO-COMS.

IF COMS-IN-FUNCTION-INDEX = 0
IF COMS-STATE-MSG-LOC = 0 .

ADD 10, COMS-IN-TEXT-LENGTH GIVING COMS-NEW-TEXT-SIZE
CALL CHECK-TEXT-1-SIZE
STRING "?ON CANOE:" DELIMITED BY SIZE,

COMS-IN-USER-DATA FORCOMS-IN-TEXT-LENGTH
INTO COMS-IN-TEXT-1

MOVE -1 TO COMS-IN-FUNCTION-INDEX
MOVE COMS-NEW-TEXT-SIZE TO COMS-IN-TEXT-LENGTH
MOVE 1 TO COMS-STATE-MSG-LOC

ELSE IF COMS-STATE-MSG-LOC = 1
ADD 10, COMS-IN-TEXT-LENGTH GIVING COMS-NEW-TEXT-SIZE
CALL CHECK-TEXT-2-SIZE
STRING "?ON CANOE:" DELIMITED BY SIZE,

COMS-IN-TEXT-1 FOR COMS-IN-TEXT-LENGTH
INTO COMS-IN-TEXT-2

MOVE -1 TO COMS-IN-FUNCTION-INDEX
MOVE COMS-NEW-TEXT-SIZE TO COMS-IN-TEXT-LENGTH
MOVE 2 TO COMS-STATE-MSG-LOC

ELSE IF COMS-STATE-MSG-LOC = 2
ADD 10, COMS-IN-TEXT-LENGTH GIVING COMS-NEW-TEXT-SIZE
CALL CHECK-TEXT-1-SIZE
STRING "?ON CANOE:" DELIMITED BY SIZE,

COMS-IN-TEXT-2 FOR COMS-IN-TEXT-LENGTH
INTO COMS-IN-TEXT-1

MOVE -1 TO COMS-IN-FUNCTION-INDEX
ADD 10 TO COMS-IN-TEXT-LENGTH
MOVE 1 TO COMS-STATE-MSG-LOC.

E-5

Sample COBOL74 Processing"-Item Interface

E-6

*
*
* Should the user desire to call COMS' OUTPUT PROC:
* 1) Make sure the STATE word is restored before calling;
* 2) Make sure it is "redistributed" after calling;
* 3) Take appropriate action based on output result.
* Example:
*
* PERFORM COMS-OUTPUT-PARAGRAPH THROUGH
* COMS-OUTPUT-PARAGRAPH-EXIT.
* IF COMS-OUTPUTPROC-RESULT •••••.•••
*
*

COMS-OUTPUT-PARAGRAPH.
* Rebuild COMS-STATE:

MOVE COMS-STATE-I-OR-O TO COMS-STATE [0:0:1].
MOVE COMS-STATE-CONV-INX TO COMS-STATE [5:13:6].
MOVE COMS-STATE-MSG-LOC TO COMS-STATE [1:15:2].
MOVE COMS-STATE-USER-FIELD TO COMS-STATE [23:47:24].

* Call ALGOL shell procedure that calls OUTPUT_PROC:
CALL COMS-OUTPUT-PROC.

* Redistribute COMS-STATE into local words:

*
*

MOVE 0 TO COMS-STATE-I-OR-O,
COMS-STATE-MSG-LOC,
COMS-STATE-USER-FIELD.

MOVE COMS-STATE TO COMS-STATE-I-OR-O [0:0:1].
MOVE COMS-STATE TO COMS-STATE-CONV-INX [13:5:6].
MOVE COMS-STATE TO COMS-STATE-MSG-LOC [15:1:2].
MOVE COMS-STATE TO COMS-STATE-USER-FIELD [47:23:24].

COMS-OUTPUT-PARAGRAPH-EXIT.
EXIT.

* RETURNING TO ALGOL SHELL:
*
* Particularly in the event you have manipulated the data items
* extracted from COMS-IN-STATE, be sure it is updated before
* returning to the calling ALGOL shell:
*

*

RETURN-TO-COMS.
MOVE COMS-STATE-I-OR-O TO COMS-STATE [0:0:1].
MOVE COMS-STATE-CONV-INX TO COMS-STATE [5:13:6].
MOVE COMS-STATE-MSG~LOC TO COMS-STATE [1:15:2].
MOVE COMS-STATE-USER-FIELD TO COMS-STATE [23:47:24].

* Exit to shell:
*

EXIT-PARAGRAPH.
EXIT PROCEDURE.

******************* END OF COBOL74 SUBPROGRAM

8600 0650-000

Sample COBOL74 Processing-Item Interface

%
%

.% SAMPLE WFL SOURCE:

BEGIN JOB PROCESS ITEM;
CLASS = 16;
JOBSUMMARY = UNCONDITIONAL;
COMPILE OBJECT/COMS/PROCESSINGITEM/ALGOLSHELL WITH ALGOL LIBRARY;

COMPILER FILE CARD (KIND=DISK,
DEPENDENTSPECS = TRUE,
TITLE = COMS/PROCESSINGITEM/ALGOLSHELL);

COMPILE OBJECT/COMS/PROCESSINGITEM/SUBPROGRAM WITH COBOL74 LIBRARY;
COMPILER FILE CARD (KIND=DISK,

DEPENDENTSPECS = TRUE,
TITLE = COMS/PROCESSINGITEM/SUBPROGRAM);

COMPILE OBJECT/COMS/PROCESSINGITEM/BOUND WITH BINDER LIBRARY;
COMPILER FILE CARD (KIND = DISK,

DEPENDENTSPECS = TRUE,
TITLE = COMS/PROCESSINGITEM/BOUND);

?END JOB
%%%%%%%%%%END OF SAMPLE WFL SOURCE

% SAMPLE BINDER SOURCE:

HOST IS OBJECT/COMS/PROCESSINGITEM/ALGOLSHELL;
BIND SUBP FROM OBJECT/COMS/PROCESSINGITEM/SUBPROGRAM;
~ o

Correlate the names in the ALGOL shell with those in the
COBOL74 subprogram:

. % Name in ALGOL shell:

USE STATE FOR
USE RETURNRESULT FOR
USE OUTPUTPROCRESULT FOR
USE CD FOR
USE TEXT_l FOR
USE TEXT 2 FOR
USE USER DATA FOR
USE RESIZE_TEXT_l_IF_NEEDED FOR
USE RESIZE_TEXT_2_IF_NEEDED FOR
USE CALL_OUTPUT_PROC FOR
USE NEWTEXTSIZE FOR
STOP;
%%%%%%%%%%%%%%%% END OF BINDER SOURCE

8600 0650-000

Name in COBOL74 Subprogram:

COMS-STATE;
COMS-RETURN-RESULT;
COMS-OUTPUTPROC-RESULT;
COMS-IN-CD-ARRAY;
COMS-IN-TEXT-l;
COMS-IN-TEXT-2;
COMS-IN-USER-DATA;
CHECK-TEXT-l-SIZE;
CHECK-TEXT-2-SIZE;
COMS-OUTPUT-PROC;
COMS-NEW-TEXT-SIZE;

E-7

E-8 8600 0650-000

Appendix F
Service Functions for Previous Releases

If you have developed your programs using Mark 3.6 or Mark 3.5 COMS, the service
functions described in this appendix are valid for those programs. These service
functions cannot be used by either the Pascal or the Report Program Generator (RPG)
programming languages.

Programs that use the null character to initialize arrays for entity names, however, must
be modified to use the space character. When COMS returns an entity name in response
to a service function call, it uses space characters to blank fill the remainder of the array.
Thus, programs that initialize and scan for null characters will fail.

Agenda Designators and Names
You can use COMS service functions to obtain information on

• Agenda designators (with GET_AGENDA_DESIGNATOR)

• Agenda names (with GET_AGENDA_NAME)

The following pages describe these service functions.

Agenda Designators

The COMS library returns an agenda designator when you pass to the
GET_AGENDA _DESIGNATOR service function either of the following:

• An agenda name with a length of 1 to 17 alphanumeric characters. It is assumed
that the agenda is defined for the window in which the program is running.

• An agenda name, with a length of 1 to 17 alphanumeric characters, and a window
name, with a length of 1 to 17 alphanumeric characters, separated by the word "OF".
This is how a program can reference agendas defined for windows other than the
window in which the program is running. For example, the following syntax allows a
program to reference agendas that are related to windows other than the window in
which the program is running.

<agenda name> OF <window name>

Origin of Input Parameter

Each agenda name is defined with the COMS Utility. To obtain reports about the agenda
names and other entities defined for your system, refer to the COMS Configuration
Guide.

8600 0650-000 F-l

Service Functions for Previous Releases

Table F-:-l shows the input parameters you pass to the GET_AGENDA_DESIGNATOR
service function and the output parameters that the CaMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Direction

Input to COMS

Output from
COMS

Table F-l. GET_AGENDA_DESIGNATOR Parameters

Parameter

Agenda name

Agenda
designator

COBOL Data Type

COBOL74: Display

COBOL74: Binary

ALGOL Data Type

EBCDIC array

Integer

Output from
COMS

Function value The function value 0 is returned by the
GET_AGENDA_DESIGNATOR call if there is an
invalid agenda name for the window in which
the program is running.

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-l at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_AGENDA_DESIGNATOR service function from an application program or an
agen<:la processing item:

COBOL74

CALL IIGET_AGENDA_DESIGNATOR OF DCILIBRARY II
USING <agenda name>,
GIVING <agenda designator>.

ALGOL

<agenda designator>:= GET_AGENDA_DESIGNATOR
«agenda name»;

Agenda Names

F-2

When you pass an agenda designator to the GET_AGENDA.-NAME service function, the
CaMS library returns an agenda name with a length of 1 to 17 alphanumeric characters.

8600 0650-000

Service Functions for Previous Releases

Origin of Input Parameter

You can obtain an agenda designator from the GET_AGENDA_DESIGNATOR service
function.

Programming Requirements

Table F-2 shows the input parameters you pass to the GET_AGENDA_NAME service
function and the output parameters that the CaMS library returns. The table also
provides data types for the parameters in ALGOL and COBOL, and the values that can
be returned by the service function call.

Table F-2. GET_AGENDA_NAME Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to COMS

Output from
COMS

Agenda
designator

Agenda name

COBOL74: Display Integer

COBOL74: Display EBCDIC array

Output from
COMS

Function value The following function values can be returned by
the GET_AGENDA_NAME call:

• 1 = No errors

• 0 = Invalid designator

For COBOL74, declare each variable as a PIC S9(11) (l-word) field. Declare the binary
data type shown in Table F-2 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_AGENDA _NAME service function from an application program or an agenda
processing item:

COBOL74

CALL "GET_AGENDA_NAME IN DCILIBRARY"
USING <agenda designator>,

<agenda name>,
GIVING <result of GET_AGENDA_NAME service function>.

ALGOL

<result of GET_AGENDA_NAME service function> :=
GET AGENDA NAME «agenda designator>,

- - <agenda name»;

8600 0650-000 F-3

Service Functions for Previous Releases

Window Designators and Maximum Users
You can use COMS service functions to ob~ain information on the following:

• Window designators (with GET_WINDOW _DESIGNATOR)

• The maximum number of users who can access a window at one time (with
GET~WINDOW_INFO)

The following pages describe these service functions.

Window Designators

F-4

When a program passes a window name having a length of 1 to 17 alphanumeric
characters to the GET_WINDOW _DESIGNATOR service function, the COMS library
returns a window designator.

If a program does not know the name of the window it is associated with, you can place
an asterisk (*) in the first column of the parameter you pass for the window name.
COMS will return the window designator for the window associated with the calling
program.

Calling the GET_WINDOW _DESIGNATOR service function is necessary if you want to
obtain a window designator in order to call the GET_WINDOW _ INFO service function.

Origin of Input Parameter

A window name is defined with COMS Utility at system-definition time. To obtain
reports about the window names and other entities defined for your system, refer to the
COMS Configuration Guide.

Programming Requirements

Table F-3 shows the input parameters you pass to the GET_WINDOW _DESIGNATOR
service function and the output parameters that the COMS library returns .. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Direction

Input to COMS

Output from
COMS

Table F-3. GET_WINDOW_DESIGNATOR Parameters

Parameter

Window name

Window
designator

COBOL Data Type

COBOL74: Display

COBOL74: Binary

ALGOL Data Type

EBCDIC array

Integer

continued

8600 0650-000

Service Functions for Previous Releases

Table F-3. GET_WINDOW_DESIGNATOR Parameters (cont.)

Direction Parameter COBOL Data Type ALGOL Data Type

Output from
COMS

Function value The following function values can be returned by
the GET_WINDOW_DESIGNATOR call:

• 0 = Invalid window name

• Other = Requested window designator

For COBOL74, declare each variable as a PIC S9(11) (l-word) field. Declare the binary
data type shown in Table F-3 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_WINDOW _DESIGNATOR service function from an application program or a
processing item:

COBOL74

CALL "GET_WINDOW_DESIGNATOR IN DCILIBRARY"
USING <window name>,
GIVING <window designator>.

ALGOL

<window designator>:= GET_WINDOW_DESIGNATOR
(<window name»;

Maximum Users of a Window

When you pass a window designator to the GET_WINDOW _ INFO service function, the
COMS library returns the maximum number of users that can access the window at a
particular time. COMS returns this value in the first word of the zero-relative array
(that is, INFO[OD, which you pass for receiving output.

Origin of Input Parameter

You can obtain a window designator by using the window name to call the
GET_WINDOW _DESIGNATOR service function.

8600 0650-000 F-5

Service Functions for Previous Releases

F-6

Programming Requirements

Table F -4 shows the input parameters you pass to the GET_WINDOW _INFO service
fWlction and the output parameters that the COM8 library returns. The table also
provides data types for the parameters in ALGOL and COBOL, and the values that can
be returned by the service fWlction call.

Table F-4. GET_WINDOWJNFO Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to COMS Window COBOL74: Binary Integer
designator

Output from Window COBOL74: Binary Integer
COMS information

Output from
COMS

Function value The following function values can be returned by
the GET_WINDOWJNFO call:

• 0 = Invalid window name

• 1 = No errors

For COBOL74, declare each variable as a PIC 89(11) (l-word) field. n"eclare the binary
data type shown in Table F-4 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_WINDOW _ INFO service fWlction from an application program or a processing
item:

COBOL74

CALL IIGET_WINDOW_INFO IN DCILIBRARY II
USING <window designator>,

<window info>,
GIVING <result of GET_WINDOW_INFO service function>.

ALGOL

<result of GET_WINDOW_INFO service function> :=
GET_WINDOW_INFO (<window designator>,

<window info»;

8600 0650-000

Service Functions for Previous Releases

Data Comm Device-Type Designators and Names
You can use CaMS service functions to obtain information on

• Data comm device-type designators (with GET_DEVICE_DESIGNATOR)

• Data comm device-type names (with GET_DEVICE_NAME)

The following pages describe these service functions.

Device-Type Designators

When you pass a device-type name with a length of 1 to 17 alphanumeric characters
to the GET_DEVICE_DESIGNATOR service function, the COMS library returns a
device-type designator.

Origin of Input Parameter

Each device-type name is defined with the CaMS Utility at system-definition time. To
obtain reports about the device-type names and other entities defined for your system,
refer to the COMS Configuration Guide.

Programming Requirements

Table F-5 shows the input parameter you pass to the GET_DEVICE_DESIGNATOR
service function and the output parameter that the CaMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Direction

Input to CaMS

Output from
CaMS

Output from
CaMS

Table F-S. GET_DEVICE_DESIGNATOR Parameters

Parameter

Device name

Window
information

Function value

COBOL Data Type ALGOL Data Type

COBOL74: Binary EBCDIC array

COBOL74: Binary Integer

The function value 0 is returned by the
GET_DEVICE_DESIGNATOR call if there is an
invalid device-type name.

For COBOL 74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-5 at level 77, and the display data types at level 01.

8600 0650-000 F-7

Service Functions for Previous Releases

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_DEVICE _DESIGNATOR service function from an application program or an
agenda processing item:

COBOL74

CALL "GET DEVICE DESIGNATOR IN DCILIBRARY" - -
USING <device-type name>,
GIVING <device-type designator>.

ALGOL

<device-type designator> :=
«device-type name»;

GET DEVICE DESIGNATOR - -

Device-Type Names

F-8

When you pass a device-type designator to the GET_DEVICE _NAME service function,
the CaMS library returns a device-type name with a length of 1 to 17 alphanumeric
characters.

Origin of Input Parameter

You can obtain a device-type designator from one of three sources:

• The GET_DEVICE_DESIGNATOR service function

• The GET_STATION_NAME service function

• The GET_STATION _ATTRIBUTES service function

Programming Requirements

Table F -6 shows the input parameters you pass to the GET_DEVICE _ ~AME service
function and the output parameters that the CaMS library returns. The table also
provides data types for the parameters in ALGOL and COBOL, and the values that can
be returned by the service function call.

8600 0650-000

Service Functions for Previous Releases

Table F-6. GET_DEVICE_NAME Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to CaMS

Output from
CaMS

Device-type
designator

Device-type na me

COBOL74: Binary Integer

COBOL74: Display EBCDIC array

Output from
CaMS

Function value The following function values can be returned by
the GET_DEVICE_NAME call:

• 1 = No errors

• 0 = Invalid designator

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F -6 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_DEVICE _NAME service function from an application program or an agenda
processing item:

COBOL74

CALL IIGET_DEVICE_NAME IN DCILIBRARY II
USING <device-type designator>,

<device-type name>,
GIVING <result of GET_DEVICE_NAME service function>.

ALGOL

<result of GET_DEVICE_NAME service function> :=
GET_DEVICE_NAME «device-type designator>,

<device-type name»;

Program Designators and Names
You can use COMS service functions to obtain information on

• Program designators (with GET_PRO GRAM_DESIGNATOR)

• Program names (with GET_PRO GRAM_NAME)

8600 0650-000 F-9

Service Functions for Previous Releases

The following pages describe these service functions.

Program Designators

F-IO

When you pass a program name with a length of 1 to 17 alphanumeric characters to the
GET_PROGRAM _DESIGNATOR service function, the COMS library returns a program
designator.

If you place an asterisk (*) in the first column of the parameter you pass for the program
name, then COMS returns a program designator for the calling program. A processing
item can call the GET_PRO GRAM_DESIGNATOR service function to determine which
program is calling it.

Origin of Input Parameter

A program name is defined with the COMS Utility at system-definition time. To obtain
reports about the program names and other entities defined for your system, refer to the
COMS Configuration Guide.

Programming Requirements

Table F-7 shows the input parameters you pass to the GET_PRO GRAM_DESIGNATOR
service function and the output parameters that the COMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Table F-7. GET_PROGRAM_DESIGNATOR Parameters

Direction

Input to COMS

Output from
COMS

Output from
COMS

Parameter

Program name

Program
designator

Function value

COBOL Data Type ALGOL Data Type

COBOL74: Display EBCDIC array

COBOL74: Binary Integer

The function value 0 is returned by the
GET_PROGRAM_DESIGNATOR call ifthere is an
invalid program name.

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-7 at level 77, and the display data types at level 01.

Examples

Follo~g are examples of COBOL and ALGOL code for calling the
GETYROGRAM_ DESIGNATOR service function from an application program or a
processing item:

8600 0650-000

Service Functions for Previous Releases

COBOL74

CALL "GET_PROGRAM_DESIGNATOR IN DCILIBRARY"
USING <program name>,
GIVING <program designator>.

ALGOL

<program designator>:= GET_PROGRAM_DESIGNATOR
«program name»;

Program Names

When you pass a program designator to the GET_PROGRAM _NAME service function,
the COMS library returns a program name, with a length of 1 to 17 alphanumeric
characters, and the program-security designator.

Origin of Input Parameter

You can obtain a program designator from either of the following sources:

• The COMS-in-Program field of the input CD in an application program

• The GET_PRO GRAM_DESIGNATOR service function

programming Requirements

Table F -8 shows the input parameters you pass to the GET_PROGRAM _NAME service
function and the output parameters that the COMS library returns. The table also
provides data types for the parameters in ALGOL and COBOL, and the values that can
be returned by the service function call.

Direction

Input to COMS

Output from
COMS

Output from
COMS·

8600 0650-000

Table F-8. GET_PROGRAM_NAME Parameters

Parameter

Program
designator

Program-security
designator

Program name

COBOL Data Type

COBOL74: Binary

COBOL74: Binary

COBOL74: Display

ALGOL Data Type

Integer

Integer

EBCDIC array

continued

F-ll

Service Functions for Previous Releases

Table F-8. GET_PROGRAM_NAME Parameters (cont.)

Direction Parameter COBOL Data Type ALGOL Data Type

Output from
COMS

Function value The following function values can be returned by
the GET_PROGRAM_NAME call:

• 1 = No errors 0 = Invalid designator

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the binary
data type shown in Table F-8 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_PROGRAM _ NAME service function from an application program or an agenda
processing item:

COBOL74

CALL "GET_PROGRAM_NAME IN DCILIBRARY II

USING <program designator>,
<program-security designator>,
<program name>,

GIVING <result of GET_PROGRAM_NAME service function>.

ALGOL

<result of GET_PROGRAM_NAME service function> :=
GET_PROGRAM_NAME «program designator>,

. <program-security designator>,
<program name»;

Security and Usercodes

F-12

The most basic unit of security for CaMS is the security category or security level. Up
to 32 security categories can be defined, although the maximum number of categories for
a list is limited to the number of defined categories. The categories can be combined in
a security-category list. Each station and each usercode is assigned a security-category
list. Therefore, the terms station security and usercode security tell you which security
categories are valid for a station or usercode, respectively.

However, each trancode can be assigned only one security category, so that station
security or usercode security tells you which trancodes are valid for the station or
usercode.

8600 0650-000

Service Functions for Previous Releases

One additional COMS security structure is called session security. This is the
intersection of the valid security categories for a particular usercode and station.

You can use COMS service functions to obtain information on

• Program-security designators (with the service function
GET_PROGRAM _SECURITY_DESIGNATOR)

• Security-category designators (with the service function
GET _SECURITY_ CATEGORY_DESIGNATOR)

• Station-security designators (with the service function
GET_STATION~SECURITY_DESIGNATOR)

• Usercode designators (with the service function GET_USER_DESIGNATOR)

• U sercode names and usercode-security designators (with the service function
GET_USER)

• Usercode security-category-list designators (with the service function
GET_USER_SECURITY_DESIGNATOR)

In addition, you can use the TEST_SECURITY_CATEGORY service function to test the
security category of various designators.

The following pages describe these service functions.

Program Security Desig,nators

When you pass a program designator to the service function called
GET_PROGRAM_SECURITY_DESIGNATOR, the COMS library returns a designator
that represents the valid security-category list associated with that program.

Origin of Input Parameter

You can obtain a program designator from either of the following sources:

• The COMS-in-Program field of the input CD in an application program

• The GET_PROGRAM_DESIGNATOa service function

Programming Requirements

Table F-9 shows the input parameters you pass to the GET _PROGRAM_SECURITY_
DESIGNATOR service function and the output parameters that the COMS library
returns. The table also provides data types for the parameters in ALGOL and COBOL,
and the values that can be returned by the service function call.

8600 0650-000 F-13

Service Functions for Previous Releases

Table F-9. GET_PROGRAM_SECURITY_DESIGNATOR Parameters

Direction

Input to COMS

Output from
COMS

Output from
COMS

Parameter

Program
designator

Progra m-secu rity
designator

Function value

COBOL Data Type ALGOL Data Type

COBOL74: Display Integer

COBOL74:Binary Integer

The function value 0 is returned by the
GET_PROGRAM_SECURITY_DESIGNATOR call
if there is an invalid security category.

For COBOL74, declare each variable as a PIC S9(11) (l-word) field. Declare the binary
data type shown in Table F -9 at level 77.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_PROGRAM_SECURITY_DESIGNATOR service function from an application
program or an agenda processing item:

COBOL74

CALL IIGET_PROGRAM_SECURITY_DESlGNATOR IN DCILIBRARy n

USING <program designator>,
GIVING <program-security designator>.

ALGOL

<program-security designator> :=
GET_PROGRAM_SECURITY_DESIGNATOR

«program designator»;

Security-Category Designators

F-14

When you pass a security-category name with a length of 1 to 17 alphanumeric
characters to the service function called GET _SECURITY_CATEGORY _DESIGNATOR,
the COMS library returns a security-category designator.

Origin of Input Parameter

Each security-category name is defined with the COMS Utility at system-definition time.
To obtain reports about the security-category names and other entities defined for your
system, refer to the COMS Configuration Guide.

8600 0650-000

Service Functions for Previous Releases

Programming Requirements

Table F -10 shows the input parameters you pass to the GET_SECURITY _CATEGORY_

DESIGNATOR service function and the output parameters that the CaMS
library returns. The table also provides data types for the parameters in ALGOL and
COBOL, and the values that can be returned by the service function call.

Table F-IO. GET_SECURITY_CATEGORY_DESIGNATOR Parameters

Direction

Input to COMS

Output from
COMS

Parameter

Security category

Progra m-secu rity
designator

COBOL Data Type ALGOL Data Type

COBOL74: Binary Integer

COBOL74: Binary Integer

Output from
COMS

Function value The function value 0 is returned by the
GET_SECURITY _CATEGORY _ DESIG NATOR call
if there is an.invaJid security category.

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-I~ at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_SECURITY _ CATEGORY_DESIGNATOR service function from an application
program or an agenda processing item:

COBOL74

~1 <security-category name> PIC X(80).
77 <security-category designator> PIC S9(11) BINARY.

MOVE <paYroll manager> TO <security-category name>.
CALL IIGET_SECURITY_CATEGORY_DESIGNATOR

IN DCILIBRARY II
USING <security-category name>,
GIVING <security-category designator>.

IF <security-category designator> = 0
DISPLAY IIInvalid security-category name ll

•

8600 0650-000 F-15

Service Functions for Previous Releases

ALGOL

EBCDIC ARRAY <security-category name> [0:79];
INTEGER <security-category designator>;
INTEGER PROCEDURE GET_SECURITY_CATEGORY_DESIGNATOR

«security-category name»;
LIBRARY DCILIBRARY;

REPLACE <security-category name> [0J BY
<payroll manager>;

<security-category designator> :=
GET_SECURITY_CATEGORY_DESIGNATOR

«security-category name»;
IF <security-category designator>= 0 THEN

DISPLAY ("Invalid security-category name");

Station-Security Designators

F-16

When you pass a station designator to the service function called
GET_STATION_SECURITY_DESIGNATOR, the COMS library returns a
designator that represents the security-category list associated with the station.

Origin of Input Parameter

You can obtain a station designator from either of the following sources:

• The COMS-in-Station field of the input CD in an application program

• The GET_STATION_DESIGNATOR service function

Programming Requirements

Table F-ll shows the input parameters you pass to the GET_STATION_SECURITY_
DESIGNATOR service function and the output parameters that the COMS library
returns. The table also provides data types for the parameters in ALGOL and COBOL,
and the values that can be returned by the service function call.

Table F-l1. GET_STATION_SECURITY_DESIGNATOR Parameters

Direction

Input to COMS

Output from
COMS

Parameter

Station designator

Station-security
designator

COBOL Data Type ALGOL Data Type

COBOL74: Binary Integer

COBOL74: Binary Integer

continued

8600 0650-000

Service Functions for Previous Releases

Table F-ll. GET_STATION_SE~URITY_DESIGNATOR Parameters (cont.)

Direction Parameter COBOL Data Type ALGOL Data Type

Output from
COMS

Function value The function value 0 is returned by the
GET_STATION_SECURITY_DESIGNATOR call if
there is an invalid designator.

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the binary
data type shown in Table F-11 at level 77.

Examples'

Following are examples of COBOL and ALGOL code for calling the
GET_STATION_SECURITY_DESIGNATOR service function from an application
program or an agenda processing item:

COBOL74

CALL "GET_STATION_SECURITY_DESIGNATOR
IN DCILIBRARY"
USING <station designator>,
GIVING <station-security designator>.

ALGOL

<station-security designator> :=
GET_STATION_SECURITY_DESIGNATOR

«station designator»;

Usercode Designators

When you pass a usercode name with a length of 1 to 17 alphanumeric characters to the
GET_USER_DESIGNATOR service function, the COMS library returns a usercode
designator .

. Origin of Input Parameter

Each usercode name is defined with the COMS Utility at system-definition time. To
obtain reports about the usercode names and other entities defined for your system,
refer to the COMS Configuration Guide. .

Programming Requirements

Table F -12 shows the input parameters you pass to the GET _ USER_DESIGNATOR
service function and the output parameters that the COMS library returns. The table

8600 0650-000 F-17

Service Functions for Previous Releases

also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Table F-12. GET_USER_DESIGNATOR Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to CaMS Usercode name COBOL74: Display EBCDIC array

Output from Usercode COBOL74: Binary Integer
CaMS designator

Output from Function value The function value 0 is returned by the
CaMS GET_USER_DESIGNATOR call ifthere is an

invalid usercode.

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the binary
data type shown in Table F -12 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET _ USER_DESIGNATOR service function from an application program or an agenda
processing item:

COBOL74

CALL IIGET_USER_DESIGNATOR IN DCILIBRARYII

USING <usercode name>,
GIVING <usercode designator>.

ALGOL

<usercode designator> := GET_USER_DESIGNATOR
«usercode name»;

Usercode Names and Security Designators

F-18

When you pass a usercode designator to the GET_USER service function, the CaMS
library returns a usercode name, with a length of 1 to 17 alphanumeric characters, and a
usercode-security designator.

If the GET _ USER_DESIGNATOR service function receives a designator corresponding
to the superuser usercode, the GET _ USER_DESIGNATOR service function returns a
name of 17 blanks.

If the GET _ USER_DESIGNATOR service function receives a name consisting of 17
blanks, then the GET _USER_DESIGNATOR service function returns the superuser

8600 0650-000

Service Functions for Previous Releases

designator. For more detailed information on the superuser usercode and superuser
designator, refer to the Security Administration Guide.

Origin of Input Parameter

You can obtain a usercode designator from either of the following sources:

• The COMS-in-Usercode field of the input CD in an application program

• The GET_USER_DESIGNATOR service function

Programming Requirements

. Table F -13 shows the input parameters you pass to the GET_USER service function and
the output parameters that the CaMS library returns. The table also provides data
types for the parameters in ALGOL and COBOL, and the values that can be returned by
the service function call.

Table F-13. GET_USER Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to COMS Usercode COBOL74: Binary Integer
designator

Output from Usercode name CO BOL7 4: Display EBCDIC array
COMS

Output from Usercode-security COBOL74: Binary Integer
COMS designator

Output from Function value The function value 0 is returned by the
COMS GET_USER call if there is an invalid designator.

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-13 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the GET_USER service
function from an application program or an agenda processing item:

COBOL74

CALL "GET USER IN DCILIBRARY"
USING <usercode·designator>,

<usercode-security designator>,
<usercode name>,

GIVING <result of GET_USER service function>.

8600 0650-000 F-19

Service Functions for Previous Releases

ALGOL

<result of GET_USER> service function> :=
GET_USER «usercode designator>,

<usercode-security designator>,
<usercode name»;

Usercode Security-Category-List Designators

F-20

When you pass a usercode designator to the service fWlction called
GET _USER_SECURITY_DESIGNATOR, the COMS library returns a designator that
represents the security-category list associated with the usercode.

Origin of Input Parameter

You can obtain a usercode designator from either of the following sources:

• .The COMS-in-Usercode field of the input CD in an application program

• The GET _ USER_DESIGNATOR service fWlction

Programming Requirements

Table F-14 shows the input parameters you pass to the GET_USER_SECURITY_DESIGNATOR
service fWlction and the output parameters that the COMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Table F-14. GET_USER_SECURITY_DESIGNATOR Parameters

Direction

Input to COMS

Output from
COMS

Output from
COMS

Parameter

Usercode
designator

Usercode-security
designator

Function value

COBOL Data Type ALGOL Data Type

CO BOL7 4: Binary Integer

COBOL74: Binary Integer

The function value 0 is returned by the
GET_USER_SECURITY_DESIGNATOR call if
there is an invalid designator.

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the binary
data type shown in Table F-14 at level 77.

8600 0650-000

Service Functions for Previous Releases

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_ USER_SECURITY_DESIGNATOR service function from an application program
or an agenda processing item:

COBOL74

CALL IIGET_USER_SECURITY_DESIGNATOR
IN DCILIBRARY II
USING <usercode designator>,
GIVING <usercode-security designator>.

ALGOL

<usercode-security designator> :=
GET_USER_SECURITY_DESIGNATOR

«usercode designator»;

Security-Category Testing

You can use the TEST_SECURITY _CATEGORY service function to test the security
category of designators for stations, usercodes, or sessions.

When you pass a security-category designator and a security designator (a designator
that represents the valid security categories for a station, a usercode, or a session) to this
service function, the CaMS library returns a function value that tells you whether the
security categories represented by the designator are valid for the station, usercode, or
session.

Origin of Input Parameters

A security-category designator can be obtained from the
GET_SECURITY _ CATEGORY_DESIGNATOR service function.

A station-security designator can be obtained from the
GET_STATION _SECURITY_DESIGNATOR service function.

A usercode-security designator can be obtained from the
GET_ USER_SECURITY_DESIGNATOR service function.

A session-security designator can be obtained from the COMS-in-Security-Desg field of
the input CD in an application program.

Table F-15 shows the input parameters you pass to the TEST_SECURITY _CATEGORY
service function and the output parameters that the COMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

8600 0650-000 F-21

Service Functions for Previous Releases

Table F-1S. TEST_SECURITY_CATEGORY Parameters

Direction

Input to COMS

Output from
COMS

Parameter

Secu rity-category
designator

Secu rity-category
test

COBOL Data Type

COBOL74: Binary

COBOL74: Binary

ALGOL Data Type

Integer

Integer

Output from
COMS

FunCtion value The following function values can be returned by
the TEST_SECURITY_CATEGORY call:

• 1 = Valid category

• 0 = Invalid category

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the binary
data type shown in Table F -15 at level 77.

Examples

Following are examples of COBOL and ALGOL code for calling the
TEST _ SECURITY_CATEGORY service function from an application program or an
agenda processing item:

COBOL74

CALL "TEST_SECURITY_CATEGORY IN DCILIBRARY"
USING <security designator>,

<security-category designator>,
GIVING <result of TEST_SECURITY_CATEGORY

service function>.

ALGOL

<result of TEST_SECURITY_CATEGORY service function> :=
TEST_SECURITY_CATEGORY «security designator>,

<security-category designator»;

Station Information
You can use the COMS service functions to obtain information on

• Station attributes (with GET_STATION_ATTRffiUTES)

• Station designators (with GET_STATION_DESIGNATOR)

• Station lists (with GET_STATION _LIST)

F-22 8600 0650-000

Service Functions for Previous Releases

• Station-list designators (with GET_STATION_LIST_DESIG~ATOR)

• Station names (with GET_STATION_NAME)

The following pages describe these service functions.

Station Attributes

When you pass a station designator to the GET_STATION _ATTRIBUTES service
function, the COMS library returns the following information:

• A logical station number (LSN). If this number is 0, then the station is disconnected.

• A device designator.

• A station-security designator.

• A virtual terminal.

• A screen size.

Origin of Input Parameter

You can obtain a station designator from either of the following sources:

• The COMS-in-Station field of the input CD in an application program

• The GET_STATION_DESIGNATOR service function

Programming Requirements

Table F-16 shows the input parameters you pass to the GET STATION ATTRIBUTES
service function and the output parameters that the COMS library retur~. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Table F-16. GET_STATION_ATTRIBUTES Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to COMS Station designator COBOL74: Binary Integer

Output from LSN COBOL74: Binary Integer
COMS

Output from Device designator COBOL74: Binary Integer
COMS

Output from Station-security COBOL74: Binary Integer
COMS designator

continued

8600 0650-000 F-23

Service Functions for Previous Releases

F-24

Table F-16. GET_STATION_ATTRIBUTES Parameters (cont.)

Direction

Output from
COMS

Output from
COMS

Parameter

Virtual terminal

Screen size

COBOL Data Type ALGOL Data Type

COBOL? 4: Binary Integer

COBOL? 4: Binary Integer

Output from
COMS

Function value The following function values can be returned by
the GET_STATION_ATIRIBUTES call:

• 1 = No errors

• 0 = One of the following has occurred:

An invalid designator was used

The station was no longer logged on to
COMS

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-16 at level 77.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_STATION _ATTRIBUTES service function from an application program or an
agenda processing item:

COBOL74

CALL IIGET STATION ATTRIBUTES IN DCILIBRARY II
- -

USING <station designator>
<device designator>
<LSN>
<station-security designator>
<virtual terminal>
<screen size>

GIVING <result of GET STATION ATTRIBUTES - -
service function>

ALGOL

<result of GET_STAT ION_ATTRI BUTES service function> :=
GET_STAT ION_ATTRI BUTES «station designator>,

<device designator>, <LSN>, <virtual terminal>,
<screen size>, <station-security designator»;

8600 0650-000

Service Functions for Previous Releases

Station Designators

When you pass a valid station name (with a length of 1 to 255 alphanumeric characters)
to the GET_STATION_DESIGNATOR service function, the COMS library returns a
station designator.

Origin of Input Parameter

Each station name is defined with the COMS Utility at system-definition time. To obtain
reports about the station names and other entities defined for your system, refer to the
COMS Configuration Guide.

Programming Requirements

Table F-17 shows the input parameters you pass to the GET_STATION_DESIGNATOR
service function and the output parameters that the COMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Table F-17. GET_STATION_DESIGNATOR Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to COMS Station name COBOL74: Display EBCDIC array

o.utput from Station designator COBOL74: Binary Integer
COMS

Output from Function value The function value 0 is returned by the
COMS GET_STATION_DESIGNATOR call if there is an

invalid station name.

For COBOL74, declare each variable as a PIC S9(11) (I-word) field. Declare the binary
data type shown in Table F-17 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET _STATION_DESIGNATOR service function from an application program or an
agenda processing item:

COBOL74

CALL "GET_STATION_DESIGNATOR IN DCILIBRARyn
USING <station name>,
GIVING <station designator>.

8600 0650-000 F-25

Service Functions for Previous Releases

ALGOL

<station designator> :=
GET_STATION_DESIGNATOR «station name»;

Station Lists

F-26

When you pass a station-list designator to the GET_STATION_LIST service function,
the COMS library returns an array of designators that represent the stations included in
the station list. Each element in the array is 1 word (6 bytes).

Origin of Input Parameter

You can obtain a station-list designator by calling the GET_STATION_LIST_DESIGNATOR
service function.

Programming Requirements

Table F-18 shows the input parameters you pass to the GET_STATION_LIST service
function and the output parameters that the COMS library returns. The table also
provides data types for the parameters in ALGOL and COBOL, and the values that can
be returned by the service function call.

Direction

Input to COMS

Output from
CaMS

Output from
COMS

Table F-18. GET_STATION_LlST Parameters

Parameter

Station-list
designator

Station list

Function value

COBOL Data Type ALGOL Data Type

COBOL74: Binary Integer

CO BOL7 4: Binary Integer array

The following function values can be returned by
the GET_STATION_L1ST call:

• 1 through n = The number of designators
returned in list

• 0 = Invalid station-list designator

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the
station-list designator in Table F-18 at level 77. Declare the station list at level 01 using
binary (for COBOL74). The size of the station list should be large enough to hold the
largest station list requested.

8600 0650-000

Service Functions for Previous Releases

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_STATION_LIST service function from an application program or an agenda
processing item:

COBOL74

CALL "GET_STATION_LIST IN DCILIBRARY"
USING <station-list designator>,

<station list>
GIVING <result of GET_STATION_LIST

service function>

ALGOL

<result of GET_STATION_LIST service function> :=
GET_STATION_LIST «station-list designator>,

<station list»;

Station-List Designators

When you pass a station-list name with a length of 1 to 17 alphanumeric characters to
the service function called GET_STATION _LIST_DESIGNATOR, the COMS library
returns a designator representing the station list.

Origin of Input Parameter

A station-list name is defined with the COMS Utility at system-definition time. To
obtain reports about the station-list names and other entities defined for your system,
refer to the COMS Configuration Guide.

Programming Requirements

Table F-19 shows the input parameters you pass to the GET_STATION_LIST_DESIGNATOR
service function and the output parameters that the COMS library returns. The table
also provides data types for the parameters in ALGOL and COBOL, and the values that
can be returned by the service function call.

Table F-19. GET_STATION_LlST_DESIGNATOR Parameters

Direction

Input to COMS

Output from
COMS

8600 0650-000

Parameter

Station-list name

Station-list
designator

COBOL Data Type ALGOL Data Type

COBOL74: Display EBCDIC array

COBOL74: Binary Integer

continued

F-27

Service Functions for Previous Releases

Table F-19. GET_STATION_LlST_DESIGNATOR Parameters (cont.)

Direction

Output from
COMS

Parameter

Function value

COBOL Data Type ALGOL Data Type

The function value.O is·returned by the
GET_STATION_LlST_DESIGNATOR call if there
is an invalid station-list name.

For COBOL74, declare each variable as a PIC S9(11) (1-word) field. Declare the binary
data type shown in Table F-19 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_STATION_LIST_DESIGNATOR service function from an application program or
an agenda processing item:

COBOL74

CALL "GET_STATION_LIST_DESIGNATOR IN DCILIBRARY"
USING <station-list name>,
GIVING <station-list designator>.

ALGOL

<station-list designator> :=
GET_STATION_LIST_DESIGNATOR

«station-list name»;

Station Names

F-28

When you pass a station designator to the GET_STATION_NAME service function, the
CaMS library returns the following information:

• A valid station name with a length of 1 to 255 alphanumeric characters.

• A device designator for the station.

• A station-security designator.

• A logical station number (LSN). If this number is 0, then the station is disconnected.

• A virtual terminal.

• A screen size.

When you pass a message to a CaMS direct-window program from the ODT using
the format < mix # of COMB> SM PASS < window> < text>, CaMS puts a station

8600 0650-000

Service Functions for Previous Releases

designator in the input CD. The input CD passes the station designator to the
GET_STATION_NAME service function, and then the COMS library returns ODT as a
valid station name.

Origin of Input Parameter

You can obtain a station designator from either of the following sources:

• The COMS-in-Station field of the input CD in an application program

• The GET_STATION_DESIGNATOR service function

Programming Requirements

Table F-20 shows. the input parameters you pass to the GET_STATION_NAME service
function and the output parameters that the COMS library returns. The table also
provides data types for the parameters in ALGOL and COBOL, and the values that can
be returned by the service function call.

Table F-20. GET_STATiON_NAME Parameters

Direction Parameter COBOL Data Type ALGOL Data Type

Input to COMS Station designator COBOL74: Binary Integer

Output from Station na me CO BOL7 4: Display EBCDIC array
COMS

Output from Device designator COBOL74: Binary Integer
COMS

Output from Station-security COBOL74: Binary Integer
COMS designator

Output from LSN COBOL74: Binary Integer
CaMS

Output from Virtual terminal COBOL74: Binary Integer
CaMS

Output from Screen size COBOL74: Binary Integer
CaMS

continued

8600 0650-000 F-29

Service Functions for Previous Releases

Table F-20. GET_STATION_NAME Parameters (cont.)

Direction Parameter COBOL Data Type ALGOL Data Type

Output from
COMS

Function value The following function values can be returned by
the GET_STATION_NAME call:

• 1 = No errors

• 0 = One of the following has occurred:

An invalid designator was used

The station was no longer logged on to
COMS

For COBOL74, declare each variable as a PIC 89(11) (1-word) field. Declare the binary
data type shown in Table F -20 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the
GET_STATION_NAME service function from an application program or an agenda
processing item:

COBOL74

CALL "GET_STATION_NAME IN DCILIBRARY II

USING <station designator>,
<station name>,
<device designator>,
<LSN>, <virtual terminal>, <screen size>
<station-security designator>

GIVING <result of GET_STATION_NAME
service function>.

ALGOL

<result of GET_STATION_NAME service function> :=
GET_STATION_NAME «station designator>,

<station name>, <device designator>, <virtual terminal>,
<screen size>, <LSN>, <station-security designator»;

Message Date and Time

F-30

You can use the GET_DATE service function to get the message date and time.

When you pass a 1-word timestamp in TIME(6) format to this service function, the
COMS library retw-ns a six-character display field representing the time portion of the

8600 0650-000

Service Functions for Previous Releases

timestamp. The six-character field displays the date in the month/day/year (MMDDyy)
format, and the time in the hours/minutes/seconds (HHMMSS) format.

Origin of Input Parameter

You can obtain a timestamp from the COMS-in-Timestamp field in the input CD of an
application program.

Programming Requirements

Table F-21 shows the input parameters you pass to the GET_DATE service function and
the output parameters that the CaMS library returns. The table also provides data
types for the parameters in ALGOL and COBOL, and the values that can be returned by
the service function call.

Table F-21. GET DATE Parameters

Direction Parameter

Input to CaMS Timestamp

Output from Date
CaMS

Output from Time
COMS

Output from Function value
COMS

COBOL Data Type ALGOL Data Type

COBOL74: Binary Integer

COBOL74: Display EBCDIC array

COBOL74: Display EBCDIC array

The following function values can be returned by
the GET DATE call:

• 1 = No errors

• 0 = Invalid timestamp

For COBOL74, declare each variable as a PIC S9(11) (l-word) field Declare the binary
data type shown in Table F-21 at level 77, and the display data types at level 01.

Examples

Following are examples of COBOL and ALGOL code for calling the GET_DATE service
function from an application program or an agenda processing item:

COBOL74

CALL "GET DATE IN DCILIBRARYII

USING <timestamp>,
<date>,
<time>,

GIVING <result of GET DATE service function>.

8600 0650-000 F-31

Service Functions for Previous Releases

F-32

ALGOL

<result of GET_DATE service function> :=
GET_DATE «timestamp>, <date>, <time»;

8600 0650-000

Glossary

This glossary provides the definitions for selected terms used in this programming guide. The
terms are presented in alphabetical order.

A
abort

ADDS

To terminate an active program or session abnormally and, sometimes, to attempt to
restart it.

See Advanced Data Dictionary System.

Advanced Data Dictionary System (ADDS)

agenda

A software product that allows for the centralized definition, storage, and retrieval of
data descriptions.

An entity used for message routing that consists of a processing-item list and a
destination. An agenda can be applied to messages that are received or sent by
application programs. .

Agenda Processor library

ALGOL

An internal library that applies processing items to messages by executing the
processing-item lists that agendas specify.

Algorithmic language. A structured, high-level programming language that provides
the basis for the stack architecture of the Unisys A Series systems. ALGOL was the
first block-structured language developed in the 1960s and served as a basis for such
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily
for systems programming .

. audit trail
In Data Management System IT (DMSlI), a file produced by the Access routines that
contains various control records and a sequence of before-update and after-update
record images resulting from changes to the database. The audit trail is used to recover
the database and supply restart information to programs after a hardware or software
failure has occurred.

audited database
In Data Management System IT (DMSIT) and in the InfoExec environment, a database
that stores a record of changes (called the audit trail), which can be used for database
recovery if a hardware or software failure occurs.

8600 0650-000 Glossary-l

Glossary

B
batch mode

BNA

c
CANDE

An execution mode in which a program running under COMS can do batch-type updates
to a database shared by other transaction processors.

The network architecture used on A Series, B 1000, and V Series systems as well as
CP 9500 and CP 2000 communications processors to connect multiple, independent,
compatible computer systems into a network for distributed processing and resource
sharing.

See Command and Edit.

casual output
Any output that is not protected from loss in the event of a system failure.

CD

. COBOL

See communication description .

Common Business-Oriented Language. A widely used, procedure-oriented language
intended for use in solving problems in business data processing. The main
characteristics of COBOL are the easy readability of programs and a considerable degree
of machine independence. COBOL is the most widely used procedure-oriented language.

Command and Edit (CANDE)
A time-sharing message control system (MCS) that enables a user to create and edit
files, and develop, test, and execute programs, interactively.

communication description (CD)
A message header passed with the message data received and sent by application
programs that interface with a message control system (MCS). The CD provides routing
information about the message data and allows use of other functions, depending on the
MCS.

Communications Management System (COMS)
A general message control system (MCS) that controls on1ineenvironments on A Series
systems. CaMS can support the processing of multiprogram transactions, single-station
remote files, and multistation remote files. See also CaMS (Full-Featured) and CaMS
(Kemel).

Communications Processor 2000 (CP 2000)

Glossary-2

A data communications processor (DCP) that provides communications interfaces to local
area networks (LANs) and wide area networks (WAN s), including BNA Version 2 and
Transmission Control ProtocollIntemet Protocol (TCPIP) networks. The CP 2000 also
provides connections to terminals controlled by BNA Version 2 software.

8600 0650-000

Glossary

COMS
See Communications Management System.

COMS Control library
A Communications Management System (CaMS) internal library that initiates a
database (DB) library for each database that uses synchronized recovery, and initiates
a transaction processor (TP) library for nondatabase, transaction-processing programs
that do not use synchronized recovery.

COMS (Full·Featured)
A version of the Communications Management System (CaMS) message control system
(MCS) that provides full configuration capabilities through the CaMS Utility. The
CaMS Utility enables the user to define and customize 'a CaMS transaction processing
environment, which provides additional features like transaction-based routing and
database recovery. In addition, the user can track CaMS statistics and use GEMCaS
migration aids.

COMS (Kernel)
The transitional, temporary version of the Communications Management System
(CaMS) message control system (MCS). CaMS creates a predefined configuration file
that enables the user to use the window feature with the following three windows: a
Menu-Assisted Resource Control (MARC) window with eight dialogues, a Command and
Edit (CANDE) window with two dialogues, and a Generalized Message Control System
(GEMCaS) window with one dialogue. Additionally, the user can communicate with
remote-file programs.

COMS library
The library that is created upon the execution of a FREEZE statement after the
SYSTEM/CaMS object code initiates as internal processes the Router library, the
Agenda Processor library, and the CaMS Control library. The CaMS library contains
service functions for designator conversion, dynamic selection procedures for linking
callers to other libraries within the CaMS system, and support for dynamic table
changes.

COMS network
A system of interconnected elements consisting of at least one computer system and one
or more stations for which the Communications Management System (CaMS) provides
communication and processing control.

COMStabies
The forms and data that comprise the information defined and maintained by means
of the COMS Utility. These forms are mcluded in the Communications Management
System (COMS) configuration file.

COMS Utility
The Communications Management System (COMS) program that defines and maintains
the specifications stored in the COMS configuration file.

configuration file
A file that contains descriptions of the tables defined t}u:ough the COMS Utility
program. These tables contain information on message routing, security, dynamic

8600 0650-000 Glossary-3

Glossary

program control, and synchronized recovery. . This file is also referred to as the CaMS
CFILE.

conversation area
The user data space in the header of a message. The conversation area is user defined
and can contain information passed by a program or processing item. When used with a
direct-window interface, this area contains the telephone number to be dialed.

CP 2000
See Communications Processor 2000.

current transaction

D

In Data Management System IT (DMSIT), the transaction that is attempting to update
the database at the moment that a transaction-state abort or system failure occurs.

DASDL
See Data and Structure Definition Language.

Data and Structure Definition Language (DASDL)
In Data Management System IT (DMSID, the language used to describe a database
logically and physically, and to specify criteria to ensure the integrity of data stored in
the database. DASDL is the source language that is input to the DASDL compiler, which
creates or updates the database description file from the input.

datacomm
See data communications.

data communications (data comm)
The transfer of data between a data source and a data sink (two computers, or a
computer and a terminal) by way of one or more data links, according to appropriate
protocols.

data communications interface (DCI) library
A library that serves as the direct programmatic interface to the Communications
Management System (CaMS). Application programs must communicate with CaMS
through the DCI lihrary to use agendas, processing items, routing by trancode, and
synchronized recovery.

Data Management System n (DMSn)
A specialized system software package used to describe a database and maintain the
relationships among the data elements in the database.

database (DB)
. An integrated, centralized system of data files and program utilities designed to support

an application. The data sets and associated index structures are defined by a single
description. Ideally, all the permanent data pertinent to a particular application resides
in a single database. The database is considered a global entity that several applications
can access and update concurrently.

Glossary-4 8600 0650-000

Glossary

DB
See database.

DB control program
A process that initiates all application programs using synchronized recovery with a
database and detects transaction-state aborts that occur during the processing of the
database. Each database being synchronized has its own DB control program.

DB library
The data communications interface (DCI) library for programs that are controlled by a
common database (DB) control program.

DCIlibrary
See data communications interface (DCI) library.

DCIENTRYPOINr
An entry point of the data communications interface (DCI) library. A compiler
automatically generates code calling this entry point whenever an application program
executes an ENABLE, RECEIVE, or SEND statement.

DCIWAITENTRYPOINT

default

An entry point of the data communications interface (DCI) library. An ALGOL
application can call DCIW AITENTRYPOINT when the application is waiting for the DCI
input to arrive and other independent, application-visible events to happen.

Pertaining to a value automatically assigned by a program or system when another value
has not been specified by the user.

default agenda
The agenda that the Communications Management System (CaMS) applies to a
message if the message does not contain a trancode, or if the message contains a
trancode value that has not been defined for the system. A default agenda. is assigned
to each direct window with the CaMS Utility program. There can be one default input
agenda and one default output agenda for each window.

designator
A binary number that is part of an internal code used in the table structure. By
using designators in programs that run under CaMS, the programmer can control
messages symbolically rather than by communicating directly with entities in the data
communications environment.

direct window

DMsn

A type of window that enables the user to route messages directly to.COMS, while using
all the CaMS capabilities for preprocessing and postprocessing of messages.

See Data Management System II.

DMsn recovery
In Data Management System II (DMSII), a database routine that is initiated after a
hardware, software, or operations failure while a database is in the update mode. DMSII

8600 0650-000 Glossary-5

· Glossary

recovery backs out any partially completed transactions by applying audit-trail images to
the database to restore it to its proper state. It also passes restart information to the
programs accessing the database.

DMTERMINATE procedure

E
EBCDIC

A system-level Data Management System II (DMSII) procedure that a database
processing program can invoke at any time to display a standard, recognizable error
message and to discontinue the program.

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most mainframe
systems.

EBCDIC array
In ALGOL, an array whose elements are EBCDIC characters.

echo program

element

enabled

A simple program that echoes or returns input messages as output. The input source
and output destination can be any devices defined in the program.

A specifically defined item within an entity category of the configuration file.

Referring to a station that is being polled (invitedto transmit in a certain order) and that
can communicate with the system.

end of file (EOF)
A code at the end ofa data file that-signals that the last record in the file has been
processed.

end of job (EOJ)
The control code that signals the receiver that ajob has completed.

end of task (EOT)
The termination of processing of a task.

entity
A category of items within the configuration file.

entry point
A procedure or function that is in-a library object.

EOF
See end of file.

EOJ
See end of job.

G I ossa ry-6 8600 0650--000

Glossary

EOT
See end of task.

EXCEPTIONTASK

F

A task-valued task attribute that the operating system sets by default to the parent task.
The EXCEPTIONTASK attribute is used to link an application program to the data
communications interface (DCn library of the Communications Management System
(COMS) during program initialization.

file sWitch

G
GEMCOS

The act of stopping the processing on one file and starting the processing on another file.
This switch can be done automatically by the system or manually by the user.

See Generalized Message Control System.

Generalized Message Control System (GEMCOS)

H
halt/load

header

I

A message control system (MCS) developed for online systems. GEMCOS is transaction
. d) onente .

A system-initialization procedure that temporarily halts the system and loads the
operating system from a disk to main memory.

A sequence of characters preceding the text of a message, containing routing or other
communications-related information.

installation
A single computer configuration, facility, center, or system consisting of one or more
mainframes and any possible combination of peripheral, communications, I/O, and other
types of support devices.

INVALIDOP
An error that occurs when a character or sequence of characters is not in accordance
with the expected character or sequence.

8600 0650--000 Glossary-7

Glossary

L
library

A collection of one or more named routines or library objects that are stored in a file and
can be accessed by other programs.

logical station number (LSN)

LSN

M
MARC

In Network Definition Language II (NDLII), a unique number assigned to each station
in a network. Each station has an LSN assigned according to the order in which the
stations are defined in NDLII. The first defined station is 0000.

See logical station number.

See Menu-Assisted Resource Control.

Master Control Program (MCP)

MCP

MCS

An operating system on A Series systems. The MCP controls the operational
environment of the system by performingjob selection, memory management, peripheral
management, virtual memory management, dynamic subroutine linkage, and logging of
errors and system utilization.

See Master Control Program.

See message control system.

Menu-Assisted Resource Control (MARC)

message

A menu-driven interface to A Series systems that also enables direct entry of commands.

Any information-containing data unit, in an ordered format, sent by means of a
communications process to a named network entity or interface. A message contains
the information (text portion) and controls for routing and handling (header portion).
In Data Communications ALGOL (DCALGOL), a special form of array. Two types
of messages are recognized by a message control system (MCS): those used with
DCALGOL DCWRITE statements and those generated elsewhere in the data
communications subsystem that appear in an MCS queue.

message control system (MCS)
A program that controls the flow of messages between terminals, application programs,
and the operating system. MCS functions can include message routing, access control,
audit and recovery, system management, and message formatting.

message header

Glossa ry--8

A sequence of characters, preceding the text of a message, that contains routing or
descriptive information for the message.

8600 0650-000

Glossary

MFI
See module function index.

MLS
See multilingual system.

module function index (MFI)
An integer value that represents a transaction code or group of transaction codes that
are used to route forms or messages.

MultiLingual System (MLS)
An environment that can process information using the standards and functional
requirements of different localities, cultures, or lines of business. The processing of
information depends on the ccsversion, languages, and conventions that are defined for
the system. For example, output messages, online help text, menus, and screens can
be developed and accessed in different natural languages, such as English, French, or
Japanese.

multiprogram environment

N
NDLll

An environment in which a software system handles multiple routines or programs
simultaneously by overlapping or interleaving their execution, permitting more than one
program to timeshare machine components.

See Network Definition Language II.

Network Definition Language II (NDLll)
The U nisys language used to describe the physical, logical, and functional characteristics
of the data communications subsystem to network support processors (NSPs), line
support processors CLSPs), and data communications data link processors (DCDLPs).

network support processor (NSP)

NSP

p

A data communications subsystem processor that controls the interface between a host
system and the data communications peripherals. The NSP executes the code generated
by the Network Definition Language II (NDLll) compiler for line control and editor
procedures. An NSP can also control line support processors (LSPs).

See network support processor.

parameter
An identifier associated in a special way with a procedure. A parameter is declared in the
procedure heading and is automatically assigned a value when the procedure is invoked.

8600 0650-000 Glossary-9

Glossary

Pascal
A high-level programming language developed by Niklaus Wirth, based on the block
structuring nature of ALGOL 60 and the data structuring innovations of C.A.R. Hoare.
Pascal is a general-purpose language.

password
A character string associated with a usercode or accesscode in the USERDATAFILE,
and used to identify legitimate users of the system. When logging on to a message
control system (MCS), a user must supply a usercode and a password.

peripheral

POF

A device used for input, output, or file storage. Examples are magnetic tape drives, disk
drives,printers, or operator display terminals (ODTs). Synonym for peripheral device.

See protected output file.

postprocessing
The processing done to a message by processing items after an application program
sends out the message.

preprocessing
The processing that the Agenda Processor performs on a message before an application
program receives the message.

process switching
An event that occurs when the operating system tells the central processing unit (CPU)
to execute a different program.

processing item
A procedure, contained in a processing-item library, used for processing a message.

processing-item library
A user-written ALGOL library containing a set of procedures called processing items.
A processing-item library can be called only by the CaMS Agenda Processor library to
preprocess and postprocess messages as they are received and sent by programs.

protected database
A database that is associated with a protected window.

protected dialogue
A dialogue on a protected window, which has the protected output feature enabled.

protected output feature
A feature that enables output messages to be written to a disk file and then sent to their
destinations only after successful completion of the transaction.

protected output file (POF)
A disk file that contains protected output messages. These messages are sent to their
destinations after a transaction has been completed.

Glossary-I 0 8600 0650-000

Glossary

protected window

Q
queue

R

A window that has the protected output feature enabled.

A data structure used for storing objects; the objects are removed in the same order they
are stored. In Data Communications ALGOL (DCALGOL), a linked list of messages.

remote file
A file with the KIND attribute specified as REMOTE. A remote file enables object
programs to communicate interactively with a terminal.

Remote Print System (ReprintS)
A Unisys software system that controls the routing and printing of backup files at
remote (data comm) destinations and on BNA networks.

Report Program Generator (RPG)

ReprintS

A high-level commercially oriented programming language used most frequently to
produce reports based on information derived from data files.

See Remote Print System.

reprod~cibility

restart

The ability of a sequence of transactions to be reproduced under-the same conditions and
to achieve the same results as the original transactions.

To return to a particular point in a program and resume operation from that point.

restart data set (RDS)
In Data Management System n (DMSID, a data set containing restart records that
application programs can access to recover database information after a system failure.

restart record
A record containing information stored by update programs that enables the programs
to restart in response to particular conditions. For each update program, COMS saves
restart records in the transaction trail along with the corresponding images of the input
header and the message data.

restartable application program

rollback

An application program. that can resume processing automatically after an interruption
such as a halt/load or an abort. '

The recovery of a database or transaction base to a consistent state at an earlier point in
time.

8600 0650-000 Glossary-II

Glossary

Router library

RPG

s

An internal library containing input-router and output-router entry points called by the
Master Control Program (MCP). The input-router entry point is primarily called by the
data communications controller (DCC) for all input-message and output-message results
associated with any station controlled by CaMS. The output-router entry point is called
from logical I/O for output from remote files.

See Report Program Generator.

Screen Design. Facility (SDF)

SDF

The InterPro product us~d for creating forms for online, transaction-based application
systems.

See Screen Design Facility.

security category
A designation that provides access security for programs, stations, transaction codes, and
usercodes. Up to 32 security categories can be defined for an installation.

security-category list
A group of several security categories that can be assigned to certain entities to
accomplish forms of security.

Semantic Information Manager (81M)
The basis of the InfoExec environment. SIM is a database management system used
to describe and maintain associations among data by means of subclass-superclass
relationships and linking attributes.

service function
An integer procedure of the Communications Management System (CaMS) library that
enables the user to access subroutines that can do the following: translate a designator
to a name that represents a CaMS entity; translate a name that represents a CaMS
entity to a designator; or obtain additional information about the name or designator
passed to the service function.

session security

81M

stack

The intersection of the security categories assigned to a station and the security
categories assigned to the usercode of the person who is logged on to that station.

See Semantic Information Manager.

A region of memory used to store data items in a particular order, usually on a last-in,
first-out basis. Synonym for process stack.

Glossary-12 8600 0650-000

state

station

string

Glossary

The condition of one or all the units or elements of a computer system.

A data structure that relates a logical connection to either a terminal device or a
pseudostation.

A connected sequence or group of characters.

subroutine
A self-contained section of a program to which program control is transferred when the
subroutine is invoked and that transfers control back to the point of invocation when it is
exited.

synchronized recovery
A function that resubmits incomplete transactions to the database after a
transaction-state abort, system crash, or rollback occurs. This COMS function is called
synchronized recovery because it reprocesses transactions in the same order that they
were originally processed by multiple programs running asynchronously, even if the
transactions were conflicting.

syncpoint

syntax

T

In Data Management System IT (DMSm, a point in time when no program is in a
transaction state.

The rules or grammar of a language.

tanked messages

task

TBR

terminal

text

Incoming messages that are being deferred from display at a station because the
associated window is suspended.

A single, complete unit of work performed by the system, such as compiling or executing
a program, or copying a file from one disk to another. Tasks are initiated by a job, by
another task, or directly by a user.

See transaction-based routing.

An I/O device designed to receive or send source data in a network.

The part of a message containing information that has an ultimate purpose and
destination beyond the data communications subsystem.

8600 0650-000 Glossary-13

Glossary

throughput
The total useful information processed during a specified time period.

TIME(6) format
In ALGOL, a system format that returns a unique number representing the time and
date (a timestamp) in the following form: 0 & (JULIANDATE - 70000) [47:16] &
(TIME (11) DIV 16) [31:32]

timestamp
An encoded, 48-bit numerical value for the time.and date. Various timestamps are
maintained by the system for each disk file. Timestamps note .the time and date a file
was created, last altered, and last accessed.

TPlibrary
See transaction processor (TP) library.

TP-to-TP message
Any output message directed to a program.

TPS
See transaction processing system.

trancode
See transaction code.

transaction
The transfer of one message from a terminal or host program to a receiving host
program, the processing carried out by the receiving host program, and the return of an
answer to the sender.

transaction code (trancode)
A code that can appear in a transaction-initiating message header, indicating the
processing that is to be carried out. This code is used to route the message to the
appropriate host program.

transaction processing system (TPS)
A Unisys system that provides methods for processing a high volume of transactions,
keeps track of all input transactions that access the database, enables the user to batch
data for later processing, and enables transactions to be processed on a database that
resides on a remote system.

transaction processor (TP) library
The data communications interface (DCn library for application programs that use the
Communications Management System (COMS).

transaction state
In Data Management System IT (DMSIT), the period in a user-language program
between a begin transaction operation and an end transaction operation.

transaction trail
A file maintained by a Communications Management System (COMS) database (DB)
library that contains a series of time-ordered transactions that can be reapplied to the

Glossary-14 8600 0650-000

Glossary

database to provide synchronized recovery in the event of a transaction-state abort,
system crash, or rollback. The file can also be used to provide ajournal of both query
and update transactions for security auditing, accounting, and statistical reporting. Each
DB library has its own transaction trail.

transaction-based routing (TBR)
A Communications Management System (COMS) capability that routes messages
according to the transaction codes they contain.

two-phase transaction

u
update

usercode

A transaction in which the first execution phase locks records without freeing any, the
second and final execution phase of the transaction frees records without locking any,
and no records are retrieved without locking them.

To delete, insert, or modify information in a database or transaction base.

An identification code used to establish user identity and control security, and to provide
for segregation of files. U sercodes can be applied to every task, job, session, and file on
the system. A valid usercode is identified by an entry in the USERDATAFILE.

USERDATAFILE

v

A system database that defines valid usercodes and contains various data about each
user (such as accesscodes, passwords, and chargecodes) and the population of users for a
particular installation.

virtual terminal (VT)

VT

w
WFL

window

A terminal attribute that identifies the text postprocessing algorithm to be applied to
data messages sent to the terminal.

See virtual terminal.

See Work Flow Language.

The concept that enables a number of program environments to be operated
independently and simultaneously at one station. One of the program environments can
be viewed while the others continue to operate.

8600 0650-000 Glossary-15

Glossary

word
A unit of computer memory. On A Series systems, a word consists of 48 bits used for
storage plus tag bits used to indicate how the word is interpreted.

Work Flow Language (WFL)
A Unisys language used for constructing jobs that compile or run programs on A Series
systems. WFL includes variables, expressions, and flow-of-control statements that offer
the programmer a wide range of capabilities with regard to task control.

Glossary-16 8600 0650-000

Bibliography

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation
(form 86000098). Unisys Corporation.

A Series ALGOL Programming Reference Manual, Volume 2: Product Interfaces
(form 8600 0734). U nisys Corporation.

A Series Binder Programming Reference Manual (form 8600 0304). Unisys
Corporation.

A Series BNA Version 2 Capabilities Overview (form 1182318). Unisys Corporation.

A Series BNA Version 2 Operations Guide (form 1222720). Unisys Corporation.

A Series CANDE Configuration Reference Manual (form 8600 1344). Unisys
Corporation.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (form 86000296). Unisys Corporation.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 2: Product
Interfaces (form 86000130). Unisys Corporation.

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide
(form 1169901). Unisys Corporation.

A Series Communications Management System (COMS) Capabilities Manual
(form 8600 0627). Unisys Corporation.

A Series Communications Management System (COMS) Configuration Guide
. (form 8600 0312). Unisys Corporation.

A Series Communications Management System (COMS) Migration Guide
(form 86001567). Unisys Corporation.

A Series Communications Management System (COMS) Operations Guide
(form 8600 0833). Unisys Corporation.

A Series DMSII Application Program Interfaces Programming Guide (form 5044225).
Unisys Corporation. Formerly A Series DMSII User Language Interface
Programming Guide.

A Series DMSII Utilities Operations Guide (form 8600 0759). Unisys Corporation.

A Series I/O Subsystem Programming Guide (form 8600 0056). Unisys Corporation.
Fo~erly A Series I/O Subsystem Programming Reference Manual.

8600 0650-000 Bibliography-l

Bibliography

A Series InfoExec Semantic Information Manager (SIM) Object Manipulation Language
(OML) Programming Guide (form 8600 0163). Unisys Corporation.

A Series InfoExec Semantic Information Manager (SIM) Technical Overview .
(form 86001674). Unisys Corporation.

A Series Mark 3.9 Software Release Capabilities Overview (form 86000015). Unisys
Corporation.

A Series Menu-Assisted Resource Control (MARC) Operations Guide (form 8600 0403).
Unisys Corporation.

A Series Pascal Programming Reference Manual, Volume 1: Basic Implementation
(form 86000080). Unisys Corporation.

A Series Pascal Programming Reference Manual, Volume 2: Product Interfaces
(form 86001294). Unisys Corporation.

A Series Report Program Generator (RPG) Programming Reference Manual, Volume 1:
Basic Implementation (form 8600 0544). U nisys Corporation.

A Series Report Program Generator (RPG) Programming Reference Manual, Volume 2:
Produc~ Interfaces (form 8600 0742). Unisys Corporation.

A Series Screen Design Facility (SDF) Operations and Programming Guide
(form 1185295). Unisys Corporation.

A Series Security Administration Guide (form 8600 0973). Unisys Corporation.

A Series Work Flow Administration and Programming Guide (form 1170149). Unisys
Corporation.

B 1000 Series to A Series Progression Guide (form 8600 0619). Unisys Corporation.

Bibliography-2 8600 0650-000

Index

A

ABORTJRECOVERY, 6-3
accessing applications, 2-2
Actual Name attribute

required value in SDF formlibrary, C-5
Additional Field Definition screen, C-8
Agenda Designator field

in message routing, 3-25
input header, 3-7
output header, 3-16

Agenda Processor, 5-3
agendas, 1-3

agenda designator, 3-27
applying to a message on output, 3-25
using for message routing, 3-25
using to route by trancodes, 3-27

ALGOL specifications
using to create processing items, 5-6

applications
accessing types of, 2-2
direct window, 2-3
MCS window types, 2-2
running, 2-1

archival recovery, 6-10
attaching dynamically to stations, 3-31
attachment status

checking for, 3-32
audited database, 6-3

B

batch mode
initializing, 7-7

batch recovery, 7-1
recovery considerations, 7-1

batch recovery program
with concurrency, 7-12
without concurrency, 7-4

batch synchronized recovery
writing programs that use, 7-3

BNA, 3-29

8600 0650-000

break condition, 3-12

c
carriage control, 3-15

altering with a processing item, 5-14
Carriage Control field, 3-14

using to alter. carriage control, 5-14
Casual Output field, 3-16
closed window dialogues

manipulating, 3-13
commands

used within CaMS, 2-2
Communication Section

used in sample program, C-ll
CaMS application

creating in a direct window, 2-1
CaMS commands

used for sending and receiving messages,
2-2

CaMS configuration file
modifying, 2-5

CaMS Control, 6-8
CaMS events

input, 3-9
tasks, 3-9

CaMS features
database recovery, 1-4
message processing, 1-2
message routing, 1-3
program use of, 2-5
security, 1-4
Statistics window, 1-4
windows, 1-2

CaMS headers
input, 3-4
output, 3-14

CaMS recovery, 6-1

Index-l

Index

COMS Utility, C-2, C-3
defining entities for direct-window

programs, C-5
handling of security errors, 8-5
service functions

calling with applications, 4-6
COMS versions, 1-1

Full-featured, 1-1
Kernel, 1-1

concurrency, 6-1
Conversation Area field

input header, 3-7
output header, 3-16

CONVERT_TIMESTAMP service function,
4-7

CP 2000
terminal gateway, 3-32

D

data
installation, 4-3

data communications interface (DCn library,
6-8

data set
restart

description for, 6-11
DATABASE < database name> TRAIL

CLOSE command, 6-9
database configuration

recovery, 6-7
database control program

function of, 6-8
database records

checking after retrieval, 8-3
database recovery, 2-4

as a feature, 1-4
DB control program, 6-8, (See also database

control program)
DCI entry point (DCIENTRYPOINT)

of DCI library, 6-8
DCI library, (See data communications

interface (DCn library)
DCIWAITENTRYPOINT, 3-9
declaration and main program loop, 7-4
declared remote-file windows, 9-2
default agendas

COMS role in handling security errors, 8-5
on input

associated with module function, 3-12
for a direct window, 3-29

Index-2

on output
for a direct window, 3-25

used in sample program, C-2
defining entities for direct-window programs,

C-2
delivery confirmation

Delivery Confirmation Flag field, 3-15
Delivery Confirmation Key field, 3-15
for network support processor (NSP)

and CP 2000 stations, 3-29
of output messages, 3-29
results

for rejected messages, 3-30
for successful messages, 3-30

Delivery Confirmation Flag field, 3-29
Delivery Confirmation Key field, 3-29
designator tables

creating, 3-3
Destination Count field, 3-14

in message routing, 3-25
using as minimal requirement

in direct-window programs, C-2
Destination Designator field, 3-15

in message routing, 3-25
detaching dynamically from stations, 3-32
detachment status

checking for, 3-33
direct routing

of a message, 3-25
direct window program

sample of, C-3
direct windows, 3-1

message processing
with SDF form, C-5

security measures for, 1-4
direct-window applications, 2-3
direct-window program

obtaining notification from, 3-12
required contents for, C-5
sample of

using SDF formlibrary, C-I0
using SDF forms, C-6

DISABLE PROGRAM command, 2-2
DISABLE WINDOW command, 2-2
DMSII database

. in recovery, 6-1
interactive recovery with, 6-9
updating, 3-4

DMTERMINATE procedure
use with exception-condition statements,

6-12
dynamic remote-file wind"Ows, 9-1

8600 0650-000

E

echo program
presented as sample direct-window

program, G-2
EGI, (See end-of-group indicator (EGI))
EM!, (See end-of-message indicator CEMD)
ENABLE INPUT statement

used in sample program, G-8, G-11
ENABLE PROGRAM, 2-2
ENABLE WINDOW, 2-2
end-of-group indicator (EGI), 3-23
end-of-message indicator (EMI), 3-23
end-of-segment indicator (ESI), 3-23
END-TRANSACTION statement

effect of order of occurrence, 6-9
entry points, 4-,.1
ENTY NAME

station names, 4-12
ESI, (See end-of-segment indicator (ESI))
exception-condition statements

using at database close, 6-12
exclusive lock, 6-5

F

form key
used in Conversation Area field, 3-17

FORM-KEY identifier
referencing the required SDF form, G-9
used in sample program, G-8, C-9, C-11

formlibrary, (See SDF formlibrary)
formlibrary Definition screen

options to choose for direct-window
program, G-8

FREEZE attribute, 5-4
Function Index field, 3-5
Function Status field, 3-5

for Module Function Index error, 3-12
function status values and mnemonics, A-1
Function values

defining, D-7

G

generated formlibrary name, C-5
GET_AGENDA_DESIGNATOR service

function, F-1, F-2

8600 0650-000

Index

GET_AGENDA_NAME service function,
F-2, F-3

GET_DATE service function, F-30, F-31
GET DESIGNATOR ARRAY

- USING_DESIGNATOR service
function, 4-8

GET DESIGNATOR USING
- DESIGNATO-R service function,

4-8
GET _ DESIGNATOR_USING _NAME service

function, 4-3, 4-9
calling in direct-window program to obtain

agenda designator, C-6
GET_DEVICE_DESIGNATOR service

function, F -7, F-8
GET_DEVICE _NAME service function, F -8,

F-9
GET INTEGER ARRAY USING

- DESIGNATOR service function,
4-10

GET_INTEGER_USING_DESIGNATOR
service function, 4-10

GET_NAME _USING_DESIGNATOR service
function, 4-11

GET_PRO GRAM_DESIGNATOR service
function, F -10

GET _PROGRAM _NAME service function,
F-11

GET PROGRAM SECURITY
- DESIGNATOR service-function,

F-13, F-14
GET _REAL _ARRAY service function, 4-12

used to access COMS statistics, 4-12
GET SECURITY CATEGORY

- DESIGNATOR service function,
F-14,F-15

GET STATION ATTRIBUTES service
- function,-F -23, F -24

GET_STATION_DESIGNATOR service
function, F -25

GET_STATION _LIST service function, F-26
GET STATION LIST DESIGNATOR

- service f~ctioii, F-27, F-28
GET_STATION~NAME service function,

F-28,F-29
GET STATION SECURITY

- DESIGNATOR service function,
F-16, F-17

GET_STRING_ USING_DESIGNATOR
service function, 4-13

GET_USER service function, F-18, F-19

Index-3

Index

GET _USER_DESIGNATOR service
function, F-17, F-18

GET_ USER_SECURITY_ DESIGNATOR
service function, F-20, F--21

GET_WINDOW _ DESIGNATOR service
function, F -4, F-5

GET_WINDOW _INFO service function, F-4,
F-5,F-6

H

header fields
input, 3-4
output, 3-14

HEADER parameter
definitions and functions of, 5-8

headers
input

using to get program to receive
messages, 3-4

mUltiple
declaring within sample programs, 3-17

INDEPENDENTTRANS option, 6-2
initializing

a direct-window program, 3-3
input events, 3-9
input header

using, 3-4
input header fields, 3-4

Agenda Designator, 3-7
Conversation Area, 3-7
Function Index, 3-5
Function Status, 3-5

values and mnemonics of, A-2
Message Count, 3-7
Program Designator, 3-5
Restart, 3-7
SDF Information, 3-7
Security Designator, 3-5
Station Designator, 3--6
Status Value, 3--6
Text Length, 3-6
Timestamp, 3-6'
Transparent, 3--6
U sercode Designator, 3-5
VT Flag, 3--6

Index-4

input header parameters
defining, D-6

input headers
using in security checking, 8-1

input messages
checking the status of, 3-13

input queue
processing, 6-10
protection, 6-1

INPUT_ROUTER
specifying as an agenda, 5-3
using to route by trancode, 3-28

installation data
mnemonics for, 4-5
used to attach configuration elements, 4-3

installation data entity items
accessing with service function calls, 4-4

interactive recovery, 6-1
preparing to use, 6-2
programmatic conventions, 6-3
requirements for using, 6-7
usingDMSII

program flow example, 6-14
usingSIM

program flow example, 6-19
with DMSII databases, 6-9
writing programs that w;;e DMSII, 6-11

interactive recovery programs
With SIM databases, 6-19

INVALID OP error, 6-4

K

Kernel version ofCOMS, 1-1
KEY DIAL, 3-31
KEY NOWAIT option, 3-32
key options

on attachment, 3-31
on detachment, 3-32

KEY WAIT option, 3-32
KEY W AITDIALOUT option, 3-32
KEY W AITNOTBUSY option, 3-32
keydata

in a database, 3-3

L

LASTSTATION attribute, 9-2
libraries

processing-item

8600 0650-000

creating in ALGOL, 5-4
library configuration

choosing, 5-5
locking phase

of a two-phase transaction, 6-5

M

MCS windows
applications, 2-2

message area
preparing, 3-2
space requirements for, 3-2
using to receive an SDF form, 3-2

Message Count field, 3-7, 3-8
placing queued messages in, 3-8

message data
altering procedure by processing items,

5-2
message origin

determining from the input header, 3-11
message processing

as a COMS feature, 1-2
message routing

as a feature ofCOMS, 1-3
message truncation

avoiding within the receive area, 3-4
messages

determining origin ot; 3-11
Message Value tables

mnemonic tables, A-I
output

method of formatting, 5-14
programming to receive, 3-4
programming to send, 3-13
queued

detecting, 3-8
routing

decision table for, 3-22
logic for, 3-21
specifying a destination, 3-24

mnemonic tables, A-I
mnemonics

explanation for use with installation data,
4-5

modifying the COMS configuration file, 2-5
module function index (MFD

in Function Index field, 3-5
with input, 3-12

Module Function Index (MFD
purpose within sample program, C-9

8600 0650-000

Index

use in programmatic security checking, 8-2
Module Index

SDF term for Module Function Index, C-8
multiple headers

declaring
within sample programs, 3-17

multiuser declared windows, 9-3
MYUSE = OUTPUT

N

using NDLIT to define a printer
as a single-output window, 8-4

NDLTI, (See Network Definition Language IT
(NDLIT))

Network Definition Language IT (NDLII), 8-4
Next Input Agenda Designator field, 3-15
notify-on text, C-2
notify-open text, C-2

o
obtaining designators, 3-14
offsets

defining for direct-window programs and
message keys, C-8

On Notification text, 3-12
Open Notification text, 3-12
origin of a message

determining,3-11
out-of-band error

when an output message is rejected, 3-30
output header fields, 3-14
output header parameters

defining, D-6
output messages

checking the status of, 3-30
formatting, 5-14

OUTPUT_PROC parameter, 5-10
OUTPUT _ PROC procedure

calling to transmit a message, 5-11
defined, 3-14
passing an input header to, 5-12
passing an output header to, 5-13
passing the parameters to, 5-12
specifying a processing item with, 3-14
uses for, 5-11

Index-5

Index

p

parameters
input header 1

methods of defining, D-6
output header

methods of defining, D-6
STATE

methods of defining, D-7
TITLE, D-1

postprocessing
by specifying an agenda, 5-1
definition of, 3-25
how COMS routes a message for, 5-2

preparing a message area, 3-2
preprocess

definition of, 5-1
preprocessing

how COMS routes a message for, 5-2
processing item

creating
by using ALGOL specifications, 5-6

processing items, 5-1
altering carriage control with, 5-14
altering message data, 5-2
applying to messages, 5-1
decisions to made before using, 2-3
example of pos~processing, 5-4
examples, D-1
formatting output messages with, 5-14
possible uses for, 5-1
providing for results, 5-16
providing for the result returned by, 5-16
STATUS LINE, D-10
TPTOMARC, D-8
used to pass input headers to

OUTPUT_PROC, 5-12
used to pass output headers to

OUTPUT_PROC, 5-13
using as SDF form, C-8
using the ALGOL specification for

creating, 5-6
processing-item libraries

choosing a configuration for, 5-5
conventions for creating, 5-4
creating in ALGOL, 5-4
example with multiple entry points, 5-5

processing-item results
providin~, 5-16

PROC_ITEM
purpose within SDF formlibrary, C-5

PROC _ITEM. [07:08]

Index-6

definitions of associated values, 5-16, 5-17
PROC _ ITEM. [4 7:39]

definitions of associated values, 5-17
Program Designator field, 3-5, 3-11

for database recovery, 3-5
Program entity

in configuration file, 4-1
program use ofCOMS features, 2-5
program-specified input agendas, 3-28
program-to-program message

how COMS routes for postprocessing, 5-3
process-security

conventions for, 8-4
program-to-station message

how COMS routes for postprocessing, 5-2
process-security conventions for, 8-4

programmatic conventions
. general kinds of, 6-3
programmatic security, 8-1

checking
using the input header for, 8-1
when to use, 8-1

programming to receive messages, 3-4
programs

failure
COMS actions, 6-5

initializing direct-window type, 3-3
remote file, 2-2
writing using batch recovery

with concurrency, 7-11
without concurrency, 7-3

protected input queue, 6-1

Q

queued messages, 3-8

R

real array size, 4-13
REAL PROCEDURE OUTPUT PROC

declaration of, 5-10
REAPPLYCOMPLETED option, 6-2
receive area

preventing message truncation from
within, 3-4

RECEIVE statement
used in sample program, C-4, C-8

receiving messages, 3-3, 3-11

8600 0650-000

record-level locking, 6-5
recovery

batch
considerations for, 7-1

interactive
preparing to use, 6-2

recovery components
ofCOMS Utility, 6-1

recovery methods
database,2-4

recovery procedure
components that facilitate, 6-8

recovery programs using DMSII
program flow for, 6-13

recovery record, 6-9
REDEFINES clause

used in sample program, C-I0
relative station numbers

associated with remote files, 9-2
remote-file program, 2-2
remote-file windows

designation of input or output files, 9-4
exception handling, 9-4
programming notes for, 9-3
tanking and multiuser remote-file

windows, 9-4
when to use, 9-1

restart class, 7-11
restart data·set, 6-7

creating, 6-11
Data and Structure Definition Language,

6-11
spanning sets on, 6-12

Restart field, 3-7
Result action values

defining, D-7
Retain Transaction Mode Designator field,

3-16
Router library, 3-28

role in message routing, 5-2
routing by trancode

used in sample program, C-8
routing methods

s

trancode, 2-4
transaction-based, 1-3

SAME RECORD AREA clause
explanation of, C-9
used in sample program, C-I0

8600 0650-000

sample COBOL74 programs, C-l
sample programs

types presented, C-l
Screen Design Facility (SDF)

error messages, 3-12
SDFform

Index

as a processing item in direct-window
program, C-4

SDF formlibrary
declaring in direct-window program, C-5
regenerating when recompiling a

direct-window program, C-6, C-I0
SDF formlibrary declaration

used in sample program, C-8, C-I0
SDF Information field

input header, 3-7
output header, 3-16

security, (See programmatic security)
defining measures for direct windows, 1-4
programmatic, 8-1

security categories, F -12
security designator, 8-2
Security Designator field, 3-5
security errors, 8-5
security level, F -12
security scheme

what to consider during planning, 2-3
segmented message

transmitting to a single destination, 5-11
segmented output, 3-23
send before receive using trancode, 3-28
SEND statement

used in sample program, C-4, C-8, C-l1
sending messages, 3-13

specifying a destination, 3-24
using to route by trancode, 3-24

service function calls
using to access installation data entity

items, 4-4
service function result values and mnemonics,

A-14
service function security category values and

nrnnemonics,A-15
service functions, 4-1

accessing, 4-1
agenda designator, F -1, F-3
agenda name, F-l, F-2
call result messages, A-14
calling, 4-6
convert timestamp, 4-7
device-type designator, F-7
device-type name, F-8

Index-7

Index

GET DESIGNATOR ARRAY
~USING_DESIGNATOR, 4-8

GET_DESIGNATOR_USING_
DESIGNATOR, 4-8

GET_DESIGNATOR_USING_NAME,4-9
GET INTEGER ARRAY - - -

USING_DESIGNATOR,
4-10

GET_ INTEGER_ USING_DESIGNATOR,
4-10

GET_NAME _USING_DESIGNATOR,
4-11

GET_REAL_ARRAY, 4-12
GET _STRING_ USING_DESIGNATOR,

4-13
input parameter, 4-2
message date, F -30
output parameter, 4-2
program designator, F -10
program name, F -11
program-security designator, F-ll, F-13
security-category designator, F-14
security-category testing, F -21
station attributes, F -23
station designator, F -25
station list, F -26
station name, F-28
station table, 4-7
station table add, 4-14
station table initialize, 4-14
station table search, 4-15
station-list designator, F -27
station-security designator, F -16
test designators, 4-15
time, F-30
user maximum per window, F-4, F-5
usercode designator, F -17
usercode security-category-list designator,

F-20
usercode-security designator, F -18
using designators within, 4-2
using to obtain entity information, 4-1
window designator, F-4

Set Next Input Agenda field, 3-15
SET TRANSACTION MODE attribute, 3-26
SHAREDBYRUNUNIT library sharing

option, 5-4, C-5
SHARING option

setting in processing-item libraries, 5-4
SIM database

in recovery, 6-2
single-user declared windows, 9-2

Index-8

spanning set
on the restart data set, 6-12

SPECIAL-NAMES paragraph
used in sample program, C-10

STATE parameter
declaration

in OUTPUT _ PROC procedure, 5-6
in PROC _ITEM procedure, 5-6

definition and functions of, 5-7
values associated with fields in word, 5-7

STATE parameters
defining, D-7

STATE.[07:08], 5-7,5-12
definitions of associated values, 5-7
occasions for use, 5-13

STATE.[13:06]
definitions of associated values, 5-7

STATE.[15:02], 5-7
definitions of associated values, 5-7
occasions for use, 5-10

STATE. [23:08]
definitions of associated values, 5-8

STATE. [47:24]
definitions of associated values, 5-8

Station Designator field, 3-6, 3-11
station entity

in configuration file, 4-1
obtaining information, F -22

Station List entity
in configuration file, 4-1

station search service functions
definition of, 4-7

station table add service function, 4-14
station table initialize service function, 4-14
station table search service function, 4-15
stations

attaching dynamically to, 3-31
dynamically detaching from, 3-32

statistics
as an allowable mnemonic of the

GET_REAL_ARRAY, 4-12
statistics mnemonic

functions of, 4-12
Statistics window, 1-4
status checking

input messages, 3-13
output messages, 3-30

STATUS LINE processing item, D-I0
Status Value field

for Module Function Index (MFI), 3-:-12
in determining message origin, 3-11
in message routing, 3-25

8600 0650-000

input header, 3-6, 3-8
output header, 3-14
using to check message status, 3-30
values and mnemonics

input header, A-8
output header, A-II

synchronized recovery, 6-9

T

tanking, 9-4
task events, 3-9
termination routine

standard routine for COBOL74 programs,
C-2

termination time limit
specifying in COMS Utility, C-3, C-6, C-I0

TEST_DESIGNATORS service function,
4-15

using in programmatic security checking,
8-4

TEST_SECURITY _ CATEGORY service
function, F-21

Text Length field
input header, 3-6
output header, 3-14

TEXT _1 parameter
definition and functions of; 5-10

TEXT _ 2 parameter
definition and functions of; 5-10

TIME (6) system format, 3-6
Timestamp field, 3-6
TITLE parameter

code used for setting, D-l
TP library, (See transaction processor

library)
TPTOMARC processing item

coding scheme that defines, D-8
parameters used by, D-6
required values for, D-7

trancode routing
areas to consider before using, 2-4

trancodes, 1-3, 3-27
associated with module function index,

3-12
send before receive, 3-28

transaction mode
agenda, 3-27
clearing, 3-27

transaction processor library, 6-8
transaction state

86000650-000

Index

using SEND and RECEIVE statements
within, 6-3

transaction trail, 6-8
transaction-based routing

description of, 1-3 .
TRANSACTION-MODE AGENDA attribute,

3-26
transactions, 6-4

reprocessing aborted, 6-10
transaction state, 6-4
transaction-state abort detection by DB

control, 6-8
updating database, 6-3

Transparent field
input header, 3-6
output header, 3-15

transparent mode, 3-6, 3-15
two-phase transaction, 6-1, 6-5

u
updating phase

of a two-phase transaction, 6-5
USERCODE attribute, 9-2
U sercode Designator field, 3-5

in programmatic security checking, 8-2
usercode entity

in configuration file, 4-1
USER_DATA parameter

definitions and functions of, 5-9
Utility, (See COMS Utility)

v
values

function
methods of defining, D-7

result action
methods of defining, D-7

versions ofCOMS, 1-1
Full-featured, 1-1
Kernel, 1-1

virtual terminal name, 3-29
VT flag bit, 3-29
VT flag field

output header, 3-15
VT Flag field

input header, 3-6

Index-9

Index

w
window dialogues

manipulating closed, 3-13
Window entity

in configuration file, 4-1
windows

available in COMS, 1-2
COMS statistics, 1-4
declared remote-file, 9-2
dynamic remote-file, 9-1

writing two-phase transactions, 6-5

?DISABLE PROGRAM < program name>
command

using to terminate a direct-window
program, C-3,C-6, C-I0

?ON <window name> command
using to initiate a direct-window program,

C-3,C-6,C-9

Index-IO 8600 0650-000

• UNISYS Help Us To Help You
Publication Title

Form Number

Unisys Corporation is interested in your comments and suggestions reguarding this manual. We will use
them to improve the qualitY of your Product Information. Please check type of suggestion:

o Addition o Deletion o Revision o Error

Comments:

Name Telephone number
()

Title Company

Address

City State Zip code

X aU!I pauop ~uole +no
r--------------------------

ade! aldelS tON 00 aseald ade!

9JaH Plo;:!

r-------------"'rl-----'-~=-~
IF MAILED

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 817 DETROIT, MI

POSTAGE WILL BE PAID BY ADDRESSEE

UNISYS CORPORATION
ATTN: PUBLICATIONS
25725 JERONIMO ROAD
MISSION VIEJO, CA 92691-9826

11.1'111111.11111.1"11.111.1111 •• 11111.1.111.1111.1

IN THE
UNITED STATES

11
86000650-000

